A233382 Decimal expansion of the integral over dx/((1+x^2)(1+tan x)) in the limits 0 and Pi/2.
5, 9, 7, 3, 8, 1, 8, 0, 9, 4, 5, 1, 8, 0, 3, 4, 8, 4, 6, 1, 3, 1, 1, 3, 2, 3, 5, 0, 9, 0, 8, 7, 3, 7, 6, 4, 3, 0, 6, 4, 3, 8, 5, 9, 0, 4, 2, 5, 5, 5, 6, 7, 3, 0, 7, 7, 0, 3, 2, 0, 7, 1, 6, 1, 5, 5, 0, 3, 1, 1, 0, 3, 3, 2, 4, 9, 8, 2, 4, 1, 2, 1, 7, 8, 9, 0, 9, 8, 9, 9, 0, 4, 0, 4, 4, 7, 4, 4, 4, 3, 7, 3, 3, 0, 0, 9
Offset: 0
Examples
0.59738180945180348461311323509087376430643859042555673077032071615503110332498…
Links
- juantheron, How to evaluate int_0^(pi/2) dx/(1+x^2)/(1+tan x), math.stackexchange, Apr 14 2013
Programs
-
Maple
Digits := 60 : # Expand 1/(1+tan x) in a Taylor series around Pi/4 and exchange # summation and integration. for dd from 80 to 100 by 10 do taylor(1/(1+tan(z)),z=Pi/4,dd) ; gfun[seriestolist](%) ; c := evalf(%) ; x := 0.0 ; for i from 0 to nops(c)-1 do 1/(1+zz^2)*op(i+1,c)*(zz-Pi/4)^i ; int(%,zz=0..Pi/2) ; x := x+evalf(%) ; end do: print(x) ; end do:
-
Mathematica
RealDigits[ NIntegrate[ 1/((1+x^2)(1+Tan[x])),{x, 0, Pi/2}, WorkingPrecision -> 110], 10, 105][[1]] (* Robert G. Wilson v, Sep 29 2014 *)