This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A233383 #18 Mar 23 2024 17:32:07 %S A233383 5,5,0,7,9,6,8,4,8,1,3,3,9,2,9,4,7,5,5,1,0,0,6,6,9,5,7,4,3,5,1,1,8,4, %T A233383 1,4,3,9,6,1,7,6,8,0,8,9,0,0,5,3,7,6,6,5,7,1,5,8,8,6,9,6,8,7,6,6,1,8, %U A233383 3,1,0,6,2,9,0,8,6,3,0,4,5,6,2,1,2,0,2,4,6,8,1,4,6,4,4,9,5,0,0,3,9,9,7,3,3 %N A233383 Decimal expansion of the absolute value of Sum_{n>=1} (-1)^n*sin(1/n). %C A233383 If the contribution of the first term, -sin(1) = -A049469, is omitted, the constant becomes Sum_{n>=1} (sin(1/(2n)) - sin(1/(2n+1))) = 0.29067413667396703114243536419518058522... %H A233383 oldrinb, <a href="http://math.stackexchange.com/questions/473885/evaluating-the-infinite-series-sum-limits-n-1-infty-sin-frac12n-sin-fra">Evaluating the infinite series sum_n=1^infty [sin(1/2n)-sin(1/(2n+1))]</a>, math.stackexchange, Aug 22 2013 %e A233383 0.550796848133929475510066957... %p A233383 M := 141 : %p A233383 Digits := 120 : %p A233383 s := sin(1/2/n)-sin(1/(2*n+1)) : %p A233383 add(subs(n=i,s),i=1..M) : %p A233383 pre := evalf(%) : %p A233383 zetaM := proc(s,M) %p A233383 local n ; %p A233383 Zeta(s)-add(1/n^s,n=1..M) ; %p A233383 evalf(%) ; %p A233383 end proc: %p A233383 for dd from 75 to 90 by 5 do %p A233383 subs(n=1/eps,s) ; %p A233383 taylor(%,eps=0,dd+1) ; %p A233383 t := gfun[seriestolist](%,'ogf') ; %p A233383 add( op(j,t)*zetaM(j-1,M),j=3..nops(t)) ; %p A233383 x := pre+% ; %p A233383 print(x) ; %p A233383 end do: %p A233383 # now sum_{n>=1} (-1)^n*sin(1/n) = -0.5570986. %p A233383 x-sin(1.0) ; %t A233383 digits = 105; NSum[(-1)^n*Sin[1/n], {n, 1, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> digits+10] // RealDigits[#, 10, digits]& // First (* _Jean-François Alcover_, Feb 24 2014 *) %K A233383 cons,nonn %O A233383 0,1 %A A233383 _R. J. Mathar_, Dec 08 2013