cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233389 Naturally embedded ternary trees having no internal node of label greater than 1.

This page as a plain text file.
%I A233389 #40 May 31 2022 14:29:55
%S A233389 1,1,3,11,46,209,1006,5053,26227,139726,760398,4211959,23681987,
%T A233389 134869448,776657383,4516117107,26486641078,156532100029,931426814462,
%U A233389 5576590927886,33574649282538,203169756237944,1235156720288767,7541099028832261,46222213821431646
%N A233389 Naturally embedded ternary trees having no internal node of label greater than 1.
%H A233389 Alois P. Heinz, <a href="/A233389/b233389.txt">Table of n, a(n) for n = 0..1000</a>
%H A233389 Markus Kuba, <a href="https://doi.org/10.37236/629">A note on naturally embedded ternary trees</a>, Electronic Journal of Combinatorics, Volume 18 (1), paper P142, 2011.
%H A233389 Markus Kuba, <a href="http://arxiv.org/abs/0902.2646">A note on naturally embedded ternary trees</a>, arXiv:0902.2646 [math.CO], 2009.
%F A233389 G.f.: (T(z) - 2)*T^3(z)/(T^2(z) - 3*T(z) + 1), where T(z) = 1 + z*T^3(z) is the generating function of ternary trees - see A001764.
%F A233389 From _Peter Bala_, Feb 06 2022: (Start)
%F A233389 a(n) = (2/(n+1))*binomial(3*n,n) + Sum_{k=0..n} (-1)^(k+1)*Fibonacci(k+1)* binomial(3*n,n-k)*(n*(11*k+5)-2*k(k+1))/(n*(2*n+k+1)) for n >= 1. See Kuba, Corollary 1, p. 6.
%F A233389 O.g.f.: A(x) = (1/x)*(B(x) - 2)/(B(x) - 1), where B(x) = Sum_{n >= 0} 2*(3*n)!/((2*n+1)!*((n+1)!))*x^n is the o.g.f. of A000139. (End)
%p A233389 a:= proc(n) option remember; `if`(n<3, 1+n*(n-1),
%p A233389       ((1349*n^2-2738*n+953)*n*a(n-1) -(5567*n^3-20114*n^2
%p A233389        +22439*n-7320)*a(n-2)-(3*(3*n-4))*(19*n-11)*(3*n-5)
%p A233389        *a(n-3))/((2*(2*n-1))*(n+1)*(19*n-30)))
%p A233389     end:
%p A233389 seq(a(n), n=0..30);  # _Alois P. Heinz_, Jul 03 2017
%t A233389 a[n_] := a[n] = If[n < 3, 1 + n*(n - 1), ((1349*n^2 - 2738*n + 953)*n*a[n - 1] - (5567*n^3 - 20114*n^2 + 22439*n - 7320)*a[n - 2] - (3*(3*n - 4)) * (19*n - 11)*(3*n - 5)*a[n - 3])/((2*(2*n - 1))*(n + 1)*(19*n - 30))];
%t A233389 Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Nov 09 2017, after _Alois P. Heinz_ *)
%o A233389 (PARI) N=66; x='x+O('x^N); T=serreverse(x-x^3)/x; v=Vec(((T-2)*T^3/(T^2-3*T+1))); vector(#v\2, n, v[2*n-1]) \\ _Joerg Arndt_, May 26 2016
%Y A233389 Cf. A000139, A001764.
%K A233389 nonn,easy
%O A233389 0,3
%A A233389 _Markus Kuba_, Dec 08 2013
%E A233389 More terms from _F. Chapoton_, May 26 2016