cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233390 a(n) = |{0 < k < n: 2^k - 1 + q(n-k) is prime}|, where q(.) is the strict partition function (A000009).

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 2, 2, 1, 4, 4, 4, 2, 3, 2, 3, 3, 7, 4, 4, 5, 3, 4, 5, 5, 5, 6, 7, 6, 5, 4, 4, 9, 3, 6, 6, 5, 4, 7, 1, 4, 5, 6, 9, 6, 8, 6, 8, 4, 5, 8, 7, 4, 3, 4, 7, 6, 6, 3, 6, 5, 6, 4, 6, 8, 7, 8, 4, 5, 3, 6, 7, 7, 3, 10, 7, 5, 6, 10, 4, 8, 4, 6, 7, 6, 8, 10, 4, 6, 8, 9, 5, 6, 5, 7, 13, 5, 5, 6
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 08 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1.
We have verified this for n up to 150000. For n = 124669, the least positive integer k with 2^k - 1 + q(n-k) prime is 13413.

Examples

			a(6) = 1 since 2^2 - 1 + q(4) = 3 + 2 = 5 is prime.
a(10) = 1 since 2^4 - 1 + q(6) = 15 + 4 = 19 is prime.
a(41) = 1 since 2^{16} - 1 + q(25) = 65535 + 142 = 65677 is prime.
a(127) = 1 since 2^{21} - 1 + q(106) = 2097151 + 728260 = 2825411 is prime.
a(153) = 1 since 2^{70} - 1 + q(83) = 1180591620717411303423 + 101698 = 1180591620717411405121 is prime.
a(164) = 1 since 2^{26} - 1 + q(138) = 67108863 + 8334326 = 75443189 is prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[2^k-1+PartitionsQ[n-k]],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]