A233390 a(n) = |{0 < k < n: 2^k - 1 + q(n-k) is prime}|, where q(.) is the strict partition function (A000009).
0, 1, 1, 1, 2, 1, 2, 2, 2, 1, 4, 4, 4, 2, 3, 2, 3, 3, 7, 4, 4, 5, 3, 4, 5, 5, 5, 6, 7, 6, 5, 4, 4, 9, 3, 6, 6, 5, 4, 7, 1, 4, 5, 6, 9, 6, 8, 6, 8, 4, 5, 8, 7, 4, 3, 4, 7, 6, 6, 3, 6, 5, 6, 4, 6, 8, 7, 8, 4, 5, 3, 6, 7, 7, 3, 10, 7, 5, 6, 10, 4, 8, 4, 6, 7, 6, 8, 10, 4, 6, 8, 9, 5, 6, 5, 7, 13, 5, 5, 6
Offset: 1
Keywords
Examples
a(6) = 1 since 2^2 - 1 + q(4) = 3 + 2 = 5 is prime. a(10) = 1 since 2^4 - 1 + q(6) = 15 + 4 = 19 is prime. a(41) = 1 since 2^{16} - 1 + q(25) = 65535 + 142 = 65677 is prime. a(127) = 1 since 2^{21} - 1 + q(106) = 2097151 + 728260 = 2825411 is prime. a(153) = 1 since 2^{70} - 1 + q(83) = 1180591620717411303423 + 101698 = 1180591620717411405121 is prime. a(164) = 1 since 2^{26} - 1 + q(138) = 67108863 + 8334326 = 75443189 is prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..8000
- Z.-W. Sun, On a^n+ bn modulo m, arXiv preprint arXiv:1312.1166 [math.NT], 2013-2014.
- Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014-2017.
Crossrefs
Programs
-
Mathematica
a[n_]:=Sum[If[PrimeQ[2^k-1+PartitionsQ[n-k]],1,0],{k,1,n-1}] Table[a[n],{n,1,100}]
Comments