This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A233400 #15 Sep 25 2024 11:53:19 %S A233400 0,1,2,9,12,107,109,120,244,337,381,407,565,592,937,1209,1224,1341, %T A233400 1717,2032,2402,3280,4957,5149,5265,5644,7065,7240,8181,8820,9712, %U A233400 10732,11901,15059,18300,19120,20436,22672,24516,25139,28044,28550,36145,38221,66201,72335,77100 %N A233400 Number n such that a2 - n^3 is a triangular number (A000217), where a2 is the least square above n^3. %C A233400 The sequence of cubes begins: 0, 1, 8, 729, 1728, 1225043, 1295029, 1728000, 14526784, 38272753, 55306341, ... %C A233400 The sequence of squares begins: 1, 4, 9, 784, 1764, 1225449, 1295044, 1729225, 14531344, 38278969, 55308969, ... %C A233400 The sequence of roots of these squares begins: 1, 2, 3, 28, 42, 1107, 1138, 1315, 3812, 6187, 7437, 8211, 13430, 14404, 28682, ... %H A233400 Robert Israel, <a href="/A233400/b233400.txt">Table of n, a(n) for n = 1..500</a> %p A233400 istri:= proc(n) issqr(1+8*n) end proc: %p A233400 filter:= proc(n) local a2, t; %p A233400 a2:= (floor(sqrt(n^3))+1)^2; %p A233400 istri(a2-n^3) %p A233400 end proc: %p A233400 select(filter, [$0..10^5]); # _Robert Israel_, Sep 10 2024 %o A233400 (Python) %o A233400 def isqrt(a): %o A233400 sr = 1 << (int.bit_length(int(a)) >> 1) %o A233400 while a < sr*sr: sr>>=1 %o A233400 b = sr>>1 %o A233400 while b: %o A233400 s = sr+b %o A233400 if a >= s*s: sr = s %o A233400 b>>=1 %o A233400 return sr %o A233400 def isTriangular(a): %o A233400 a+=a %o A233400 sr = isqrt(a) %o A233400 return (a==sr*(sr+1)) %o A233400 for n in range(77777): %o A233400 n3 = n*n*n %o A233400 a = isqrt(n3)+1 %o A233400 if isTriangular(a*a-n3): print(str(n), end=', ') %Y A233400 Cf. A000217, A000290, A000578, A233401. %K A233400 nonn %O A233400 1,3 %A A233400 _Alex Ratushnyak_, Dec 09 2013