cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233413 Numbers k such that k divides 1 + Sum_{j=1..k} prime(j)^15.

This page as a plain text file.
%I A233413 #31 Jun 02 2021 05:06:00
%S A233413 1,2,4,5,6,10,12,14,22,74,397,524,620,857,3727,8171,9194,41032,59604,
%T A233413 109471,123231,166394,195736,203440,494620,805738,3000362,6861264,
%U A233413 64286003,69417562,113888084,162292604,241184820,658646484,864667379,1027008032,4023976348
%N A233413 Numbers k such that k divides 1 + Sum_{j=1..k} prime(j)^15.
%C A233413 a(49) > 2*10^13. - _Bruce Garner_, Jun 02 2021
%H A233413 Bruce Garner, <a href="/A233413/b233413.txt">Table of n, a(n) for n = 1..48</a> (first 43 terms from Robert Price)
%H A233413 OEIS Wiki, <a href="https://oeis.org/wiki/Sums_of_primes_divisibility_sequences">Sums of powers of primes divisibility sequences</a>
%e A233413 a(6)=10 because 1 plus the sum of the first 10 primes^15 is 8913922901063237276800 which is divisible by 10.
%t A233413 p = 2; k = 0; s = 1; lst = {}; While[k < 40000000000, s = s + p^15; If[Mod[s, ++k] == 0, AppendTo[lst, k]; Print[{k, p}]]; p = NextPrime@ p] (* derived from A128169 *)
%Y A233413 Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n).
%Y A233413 Cf. A007504, A045345, A171399, A128165, A233523, A050247, A050248.
%Y A233413 Cf. A024450, A111441, A217599, A128166, A233862, A217600, A217601.
%K A233413 nonn
%O A233413 1,2
%A A233413 _Robert Price_, Dec 09 2013