cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233417 a(n) = |{0 < k <= n/2: q(k)*q(n-k) + 1 is prime}|, where q(.) is the strict partition function (A000009).

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 2, 3, 2, 2, 4, 5, 3, 1, 5, 7, 1, 3, 4, 4, 3, 2, 5, 3, 6, 6, 1, 6, 8, 6, 6, 4, 7, 7, 3, 5, 5, 6, 6, 5, 5, 3, 7, 8, 7, 7, 8, 8, 6, 4, 8, 8, 5, 3, 8, 8, 5, 15, 6, 8, 3, 9, 5, 6, 7, 9, 4, 6, 8, 9, 5, 4, 7, 8, 7, 6, 10, 9, 9, 8, 6, 6, 9, 9, 7, 12, 5, 10, 7, 7, 5, 3, 8, 10, 7, 5, 9, 7, 4, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 09 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 1. Similarly, for any integer n > 5, there is a positive integer k < n with q(k)*q(n-k) - 1 prime.
(ii) Let n > 1 be an integer. Then p(k) + q(n-k)^2 is prime for some 0 < k < n, where p(.) is the partition function (A000041). If n is not equal to 8, then k^3 + q(n-k)^2 is prime for some 0 < k < n.

Examples

			a(14) = 1 since q(1)*q(13) + 1 = 1*18 + 1 = 19 is prime.
a(17) = 1 since q(4)*q(13) + 1 = 2*18 + 1 = 37 is prime.
a(27) = 1 since q(13)*q(14) + 1 = 18*22 + 1 = 397 is prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[PartitionsQ[k]*PartitionsQ[n-k]+1],1,0],{k,1,n/2}]
    Table[a[n],{n,1,100}]