cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233425 Primes p in prime septuplets (p, p+2, p+6, p+8, p+12, p+18, p+20) at the end of the maximal gaps in A201051.

This page as a plain text file.
%I A233425 #8 Feb 16 2025 08:33:21
%S A233425 165701,1068701,11900501,39431921,67816361,124716071,300768311,
%T A233425 428319371,661972301,1346761511,1699221521,3205239881,10540522241,
%U A233425 16206106991,23911479071,38749334621,159330579041,351146640191,383960791211,714031248641,2881987944371,3381911721101,5105053487531
%N A233425 Primes p in prime septuplets (p, p+2, p+6, p+8, p+12, p+18, p+20) at the end of the maximal gaps in A201051.
%C A233425 Prime septuplets (p, p+2, p+6, p+8, p+12, p+18, p+20) are one of the two types of densest permissible constellations of 7 primes. Maximal gaps between septuplets of this type are listed in A201051; see more comments there.
%H A233425 Alexei Kourbatov, <a href="/A233425/b233425.txt">Table of n, a(n) for n = 1..36</a>
%H A233425 Tony Forbes, <a href="http://anthony.d.forbes.googlepages.com/ktuplets.htm">Prime k-tuplets</a>
%H A233425 Alexei Kourbatov, <a href="http://www.javascripter.net/math/primes/maximalgapsbetweenprimeseptuplets.htm">Maximal gaps between prime septuplets</a>
%H A233425 Alexei Kourbatov, <a href="http://arxiv.org/abs/1309.4053">Tables of record gaps between prime constellations</a>, arXiv preprint arXiv:1309.4053, 2013.
%H A233425 Eric W. Weisstein, <a href="https://mathworld.wolfram.com/k-TupleConjecture.html">k-Tuple Conjecture</a>
%e A233425 The gap of 165690 between septuplets starting at p=11 and p=165701 is the very first gap, so a(1)=165701. The gap of 903000 between septuplets starting at p=165701 and p=1068701 is a maximal (record) gap - larger than any preceding gap; therefore a(2)=1068701. The next gap of 10831800 ending at p=11900501 is again a record, so a(3)=11900501. The next gap is smaller, so a new term is not added to the sequence.
%Y A233425 Cf. A022009, A201051, A201249.
%K A233425 nonn
%O A233425 1,1
%A A233425 _Alexei Kourbatov_, Dec 09 2013