This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A233427 #52 Mar 26 2025 16:26:50 %S A233427 1,1,1,1,0,1,1,0,0,1,1,0,0,0,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,0,5,0,0,5, %T A233427 0,1,1,0,0,56,0,56,0,0,1,1,0,0,0,501,501,0,0,0,1,1,0,0,0,0,4006,0,0,0, %U A233427 0,1,1,1,0,0,0,27950,27950,0,0,0,1,1,1,0,45,0,0,214689,0,214689,0,0,45,0,1 %N A233427 Number A(n,k) of tilings of a k X n rectangle using pentominoes of any shape; square array A(n,k), n>=0, k>=0, read by antidiagonals. %H A233427 Liang Kai, <a href="/A233427/b233427.txt">Antidiagonals n = 0..26, flattened</a> (Antidiagonals n = 0..17 from Alois P. Heinz) %H A233427 R. S. Harris, <a href="http://www.bumblebeagle.org/polyominoes/tilingcounting">Counting Polyomino Tilings</a> %H A233427 Liang Kai, <a href="https://arxiv.org/abs/2503.17698">Solving tiling enumeration problems by tensor network contractions</a>, arXiv:2503.17698 [math.CO], 2025. %H A233427 Wikipedia, <a href="https://en.wikipedia.org/wiki/Pentomino">Pentomino</a> %F A233427 A(n,k) = 0 <=> n*k mod 5 > 0. %e A233427 A(5,2) = A(2,5) = 5: %e A233427 ._________. ._________. ._________. ._________. ._________. %e A233427 |_________| | ._____| | | |_____. | | ._| | | |_. | %e A233427 |_________| |_|_______| |_______|_| |___|_____| |_____|___|. %e A233427 Square array A(n,k) begins: %e A233427 1, 1, 1, 1, 1, 1, 1, ... %e A233427 1, 0, 0, 0, 0, 1, 0, ... %e A233427 1, 0, 0, 0, 0, 5, 0, ... %e A233427 1, 0, 0, 0, 0, 56, 0, ... %e A233427 1, 0, 0, 0, 0, 501, 0, ... %e A233427 1, 1, 5, 56, 501, 4006, 27950, ... %e A233427 1, 0, 0, 0, 0, 27950, 0, ... %e A233427 1, 0, 0, 0, 0, 214689, 0, ... %e A233427 1, 0, 0, 0, 0, 1696781, 0, ... %e A233427 1, 0, 0, 0, 0, 13205354, 0, ... %e A233427 1, 1, 45, 7670, 890989, 101698212, 7845888732, ... %e A233427 ... %Y A233427 Columns (or rows) include: A000012, A054318, A233428, A233429, A174249, A233430. %Y A233427 Cf. A099390, A233320, A230031, A246902, A247117, A278657. %Y A233427 Row sums of A247702, A247703, A247704, A247705, A247706, A247707, A247708, A247709, A247710, A247711, A247712, A247713 give A(n,5). %K A233427 nonn,tabl %O A233427 0,31 %A A233427 _Alois P. Heinz_, Dec 09 2013