This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A233436 #21 Sep 18 2024 05:14:44 %S A233436 1,1,2,8,50,424,4472,55760,797022,12801296,227829866,4446822688, %T A233436 94422531876,2166975912496,53457972027254,1410960809766320, %U A233436 39680975219789210,1184783226216138592,37434788449030871076,1248022160663960432264,43785432805297352937954,1612690422384099635004264 %N A233436 a(n) = Sum_{k=0..n-1} [x^k] A(x)^(n-1) for n>=1 with a(0)=1, where g.f. A(x) = Sum_{n>=0} a(n)*x^n. %H A233436 Vaclav Kotesovec, <a href="/A233436/b233436.txt">Table of n, a(n) for n = 0..150</a> %F A233436 Given g.f. A(x), let G(x) = A(x*G(x)), then A(x) = G(x/A(x)) = 1 + x*(G(x) + x*G'(x)) / (G(x) - x*G(x)^2). %F A233436 a(n)/a(n-1) ~ n/LambertW(1). - _Vaclav Kotesovec_, Sep 14 2024 %e A233436 G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 50*x^4 + 424*x^5 + 4472*x^6 + 55760*x^7 +... %e A233436 ILLUSTRATION OF INITIAL TERMS. %e A233436 If we form an array of coefficients of x^k in A(x)^n, n>=0, like so: %e A233436 A^0 = [1],0, 0, 0, 0, 0, 0, 0, 0, ...; %e A233436 A^1 = [1, 1], 2, 8, 50, 424, 4472, 55760, 797022, ...; %e A233436 A^2 = [1, 2, 5], 20, 120, 980, 10056, 122960, 1732736, ...; %e A233436 A^3 = [1, 3, 9, 37], 216, 1704, 17006, 203760, 2829030, ...; %e A233436 A^4 = [1, 4, 14, 60, 345], 2640, 25632, 300744, 4111472, ...; %e A233436 A^5 = [1, 5, 20, 90, 515, 3841], 36310, 417000, 5609960, ...; %e A233436 A^6 = [1, 6, 27, 128, 735, 5370, 49493], 556212, 7359480, ...; %e A233436 A^7 = [1, 7, 35, 175, 1015, 7301, 65723, 722765], 9400986, ...; %e A233436 A^8 = [1, 8, 44, 232, 1366, 9720, 85644, 921864, 11782417], ...; ... %e A233436 then a(n) equals the sum of the coefficients of x^k, k=0..n-1, in A(x)^(n-1) (shown above in brackets) for n>=1: %e A233436 a(1) = 1 = 1; %e A233436 a(2) = 1 + 1 = 2; %e A233436 a(3) = 1 + 2 + 5 = 8; %e A233436 a(4) = 1 + 3 + 9 + 37 = 50; %e A233436 a(5) = 1 + 4 + 14 + 60 + 345 = 424; %e A233436 a(6) = 1 + 5 + 20 + 90 + 515 + 3841 = 4472; %e A233436 a(7) = 1 + 6 + 27 + 128 + 735 + 5370 + 49493 = 55760; %e A233436 a(8) = 1 + 7 + 35 + 175 + 1015 + 7301 + 65723 + 722765 = 797022; ... %e A233436 Also, from a diagonal in the above table we can obtain the coefficients: %e A233436 [1/1, 2/2, 9/3, 60/4, 515/5, 5370/6, 65723/7, 921864/8, ...] %e A233436 to form the power series %e A233436 G(x) = 1 + x + 3*x^2 + 15*x^3 + 103*x^4 + 895*x^5 + 9389*x^6 + 115233*x^7 +... %e A233436 that satisfies: A(x) = G(x/A(x)) = 1 + x*(G(x) + x*G'(x))/(G(x) - x*G(x)^2). %o A233436 (PARI) {a(n)=local(A=1+x);if(n==0,1,for(i=1,n, %o A233436 A=1+sum(k=1,n-1,sum(j=0,k-1,polcoeff(A^(k-1)+x*O(x^j),j))*x^k)+x*O(x^n)); %o A233436 sum(j=0,n-1,polcoeff(A^(n-1)+x*O(x^j),j)))} %o A233436 for(n=0,20,print1(a(n),", ")) %Y A233436 Cf. A088713, A088358. %K A233436 nonn %O A233436 0,3 %A A233436 _Paul D. Hanna_, Dec 09 2013