This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A233443 #24 Aug 15 2014 05:43:53 %S A233443 2,5,23,47,193,389,1667,8807,9431,10177,10597,10847,11831,13411,17183, %T A233443 22433,29201,33893,36073,38321,40093,42461,48991,50131,54287,54851, %U A233443 57037,63347,65183,67121,71917,87803,88607,91291,94847,104491,108293,112163,116101,117167,122033 %N A233443 Primes that are exactly between the nearest square and the nearest triangular number. %C A233443 A subsequence of A233074. %t A233443 nearestTri[n_] := Block[{a = Floor@ Sqrt[ 2n - 1]}, If[ 4n < a (a + 3), a (a - 1)/2, a (a + 1)/2]]; nearestSq[n_] := Block[{a = Floor@ Sqrt@ n}, If[a^2 + a + 1/2 > n, a^2, a^2 + 2 a + 1]]; Select[ Prime@ Range@ 12000, 2# == nearestSq@# + nearestTri@# &] (* _Robert G. Wilson v_, Aug 01 2014 *) %o A233443 (PARI) lista(nn) = {forprime(p=2, nn, sqp = sqrtint(p); ps = sqp^2; ns = (sqp+1)^2; sqt = floor((sqrt(8*p+1) - 1)/2); pt = sqt*(sqt+1)/2; nt = (sqt+2)*(sqt+1)/2; if (((ds=p-ps) < (ns-p)) && ((dt=(nt-p)) <= p-pt) && (ds == dt), print1(p, ", "), if (((ds=ns-p) < (p-ps)) && ((dt=(p-pt)) < nt-p) && (ds == dt), print1(p, ", "));););} \\ _Michel Marcus_, Aug 11 2014 %Y A233443 Cf. A000040, A000217, A000290, A233074. %K A233443 nonn %O A233443 1,1 %A A233443 _Alex Ratushnyak_, Dec 09 2013 %E A233443 Corrected by _Alex Ratushnyak_, Jun 08 2014