cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233444 Primes that are exactly halfway between the nearest square and the nearest cube.

This page as a plain text file.
%I A233444 #9 May 01 2018 21:32:35
%S A233444 2203,90863,185477,388573,613607,912349,1293899,1600919,2146457,
%T A233444 30661333,35608189,81190429,105823093,122753857,204341747,338602837,
%U A233444 368601707,374788121,426958673,498675409,586371239,656232799,665360321,674509487,693132527,1102304669,1180942709
%N A233444 Primes that are exactly halfway between the nearest square and the nearest cube.
%C A233444 A subsequence of A233075.
%H A233444 Robert Israel, <a href="/A233444/b233444.txt">Table of n, a(n) for n = 1..10000</a>
%p A233444 Res:= NULL:
%p A233444 for x from 3 to 2000 do
%p A233444   x3:= x^3;
%p A233444   y:= floor(sqrt(x3));
%p A233444   p:= (x3+y^2)/2;
%p A233444   if p::integer and x3-p <= p - (x-1)^3 and p - y^2 <= (y+1)^2-p and isprime(p) then
%p A233444     Res:= Res, p;
%p A233444   fi;
%p A233444   p:= (x3+(y+1)^2)/2;
%p A233444   if p::integer and p-x3 <= (x+1)^3-p and (y+1)^2-p <= p - y^2 and isprime(p) then
%p A233444       Res:= Res, p;
%p A233444   fi
%p A233444 od:
%p A233444 Res; # _Robert Israel_, May 01 2018
%Y A233444 Cf. A000040, A000290, A000578, A233075.
%Y A233444 Cf. A002760 (Squares and cubes).
%K A233444 nonn
%O A233444 1,1
%A A233444 _Alex Ratushnyak_, Dec 09 2013