This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A233460 #21 Nov 28 2024 10:12:19 %S A233460 2,28751,62639,4620757,6478193,2298168044423,128195718927553 %N A233460 Prime(n), where n is such that (sum_{i=1..n} prime(i)^16) / n is an integer. %C A233460 a(8) > 128971810356197. - _Bruce Garner_, Mar 24 2021 %C A233460 a(8) > 7.6*10^16. - _Paul W. Dyson_, Nov 27 2024 %H A233460 OEIS Wiki, <a href="https://oeis.org/wiki/Sums_of_primes_divisibility_sequences">Sums of powers of primes divisibility sequences</a> %F A233460 a(n) = prime(A131276(n)). %e A233460 a(1) = 2, because 2 is the 1st prime and the sum of the first 1 primes^16 = 65536 when divided by 1 equals 65536 which is an integer. %t A233460 t = {}; sm = 0; Do[sm = sm + Prime[n]^16; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *) %o A233460 (PARI) is(n)=if(!isprime(n),return(0)); my(t=primepi(n),s); forprime(p=2,n,s+=Mod(p,t)^16); s==0 \\ _Charles R Greathouse IV_, Nov 30 2013 %o A233460 (PARI) S=n=0;forprime(p=1,,(S+=p^16)%n++||print1(p",")) \\ _M. F. Hasler_, Dec 01 2013 %Y A233460 Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n). %Y A233460 Cf. A007504, A045345, A171399, A128165, A233523, A050247, A050248. %Y A233460 Cf. A024450, A111441, A217599, A128166, A233862, A217600, A217601. %K A233460 nonn,more %O A233460 1,1 %A A233460 _Robert Price_, Dec 10 2013 %E A233460 a(6)-a(7) from _Bruce Garner_, Mar 24 2021