This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A233462 #23 Jun 06 2021 15:51:11 %S A233462 2,3,5,7,11,13,19,23,29,37,47,53,59,71,89,103,113,131,139,167,173,197, %T A233462 223,233,257,269,281,311,337,409,439,463,503,541,557,659,719,769,941, %U A233462 997,1013,1069,1109,1163,1249,1259,1321,1451,1493,1511,1613,1747,1867 %N A233462 Prime(n), where n is such that (1+Sum_{i=1..n} prime(i)^16) / n is an integer. %C A233462 a(616) > 491952295618219. - _Bruce Garner_, Jun 06 2021 %H A233462 Bruce Garner, <a href="/A233462/b233462.txt">Table of n, a(n) for n = 1..615</a> (first 479 terms from Robert Price) %H A233462 OEIS Wiki, <a href="https://oeis.org/wiki/Sums_of_primes_divisibility_sequences">Sums of powers of primes divisibility sequences</a> %e A233462 a(5) = 11, because 11 is the 5th prime and the sum of the first 5 primes^16+1 = 45983115425144645 when divided by 5 equals 9196623085028929 which is an integer. %t A233462 t = {}; sm = 1; Do[sm = sm + Prime[n]^16; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *) %o A233462 (PARI) is(n)=if(!isprime(n),return(0)); my(t=primepi(n),s); forprime(p=2,n,s+=Mod(p,t)^16); s==0 \\ _Charles R Greathouse IV_, Nov 30 2013 %Y A233462 Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n). %Y A233462 Cf. A007504, A045345, A171399, A128165, A233523, A050247, A050248. %Y A233462 Cf. A024450, A111441, A217599, A128166, A233862, A217600, A217601. %K A233462 nonn %O A233462 1,1 %A A233462 _Robert Price_, Dec 10 2013