This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A233468 #38 Mar 25 2025 15:02:13 %S A233468 1,2,2,-5,2,4,-7,4,-3,2,-3,4,2,-5,6,-3,2,-3,4,-7,6,-5,6,-1,-5,2,4,-7, %T A233468 4,-4,4,-3,2,1,2,-3,-3,4,-3,6,-7,1,2,4,-7,3,3,-5,2,4,-3,2,1,-3,-3,6, %U A233468 -7,6,-5,2,1,-4,4,2,-5,5,-3,1,2,-5,6 %N A233468 The digital root of prime(n+1) minus the digital root of prime(n). %H A233468 Conner L. Delahanty, <a href="/A233468/b233468.txt">Table of n, a(n) for n = 1..20000</a> %F A233468 a(n) = (prime(n+1) mod 9) - (prime(n) mod 9). %F A233468 a(n) = prime(n + 1) - 9*floor((prime(n + 1) - 1)/9) - prime(n) + 9*floor((prime(n) - 1)/9). - _Wesley Ivan Hurt_, Apr 19 2014 %F A233468 a(n) = A010888(A000040(n+1)) - A010888(A000040(n)). - _Michel Marcus_, Apr 19 2014 %e A233468 For n = 1, (prime(2) mod 9) - (prime(1) mod 9) = 3 (mod 9) - 2 (mod 9) = 3-2 = 1. %e A233468 For n = 2, (prime(3) mod 9) - (prime(2) mod 9) = 5 (mod 9) - 3 (mod 9) = 5-3 = 2. %e A233468 For n = 3, (prime(4) mod 9) - (prime(3) mod 9) = 7 (mod 9) - 5 (mod 9) = 7-5 = 2. %e A233468 For n = 4, (prime(5) mod 9) - (prime(4) mod 9) = 11 (mod 9) - 7 (mod 9) = 2-7 = -5. %p A233468 A233468:=n->(ithprime(n+1) mod 9) - (ithprime(n) mod 9); seq(A233468(n), n=1..100); # _Wesley Ivan Hurt_, Apr 19 2014 %t A233468 Table[Mod[Prime[n + 1], 9] - Mod[Prime[n], 9], {n, 100}] (* _Wesley Ivan Hurt_, Apr 19 2014 *) %o A233468 (Python) %o A233468 dd=[] %o A233468 def prim(end): %o A233468 num=3 %o A233468 primes=[2, 3] %o A233468 while (len(primes)<=end): %o A233468 num+=1 %o A233468 prime=False %o A233468 length=len(primes) %o A233468 for y in range(0, length): %o A233468 if (num % primes[y]!=0): %o A233468 prime=True %o A233468 else: %o A233468 prime=False %o A233468 break %o A233468 if (prime): %o A233468 primes.append(num) %o A233468 for x in range(len(primes)-1): %o A233468 dd.append((primes[x+1]%9) - (primes[x]%9)) %o A233468 return dd %Y A233468 Cf. A000040, A010888. %K A233468 base,sign,easy %O A233468 1,2 %A A233468 _Conner L. Delahanty_, Apr 18 2014