cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233517 Record values in A061026, the smallest number m such that n divides phi(m), where phi is Euler's totient function.

This page as a plain text file.
%I A233517 #10 May 26 2024 03:55:41
%S A233517 1,3,7,11,29,53,103,191,311,709,1021,1091,1597,2339,3547,5449,8243,
%T A233517 9337,13711,16673,17579,18899,25367,37217,62207,74441,87869,94439,
%U A233517 94789,96353,114013,171167,229981,397253,424769,432781,496747,542599,583397,673451,741677
%N A233517 Record values in A061026, the smallest number m such that n divides phi(m), where phi is Euler's totient function.
%C A233517 See A233516 for the n that produce these values. After the initial 1, these numbers are prime.
%H A233517 Amiram Eldar, <a href="/A233517/b233517.txt">Table of n, a(n) for n = 1..101</a>
%t A233517 t2 = {{1, 1}}; Do[k = 1; While[Mod[EulerPhi[k], n] > 0, k++]; If[k > t2[[-1,2]], AppendTo[t2, {n, k}]; Print[{n, k}]], {n, 2, 10^3}]; Transpose[t2][[2]]
%o A233517 (PARI) lista(cmax) = {my(v = vector(cmax), c = 0, k = 1, d, vm = 0); while(c < cmax, d = divisors(eulerphi(k)); for(i = 1, #d, if(d[i] <= cmax && v[d[i]] == 0, c++; v[d[i]] = k)); k++); for(i = 1, cmax, if(v[i] > vm, vm = v[i]; print1(v[i], ", ")));} \\ _Amiram Eldar_, May 26 2024
%Y A233517 Cf. A061026, A233516.
%K A233517 nonn
%O A233517 1,2
%A A233517 _T. D. Noe_, Feb 12 2014