cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233530 Triangle, read by rows, that transforms diagonals in the table of coefficients in the successive iterations of the g.f. (A233531) such that column 0 consists of all zeros after row 1.

This page as a plain text file.
%I A233530 #8 Dec 11 2013 23:27:36
%S A233530 1,1,1,0,2,1,0,3,3,1,0,8,9,4,1,0,38,40,18,5,1,0,268,264,112,30,6,1,0,
%T A233530 2578,2379,953,240,45,7,1,0,31672,27568,10500,2505,440,63,8,1,0,
%U A233530 475120,392895,143308,32686,5445,728,84,9,1,0,8427696,6663624,2342284,514660,82176,10423,1120,108,10,1,0,172607454,131211423,44677494,9514570,1467837,178689,18214,1632,135,11,1
%N A233530 Triangle, read by rows, that transforms diagonals in the table of coefficients in the successive iterations of the g.f. (A233531) such that column 0 consists of all zeros after row 1.
%e A233530 Triangle begins:
%e A233530 1;
%e A233530 1, 1;
%e A233530 0, 2, 1;
%e A233530 0, 3, 3, 1;
%e A233530 0, 8, 9, 4, 1;
%e A233530 0, 38, 40, 18, 5, 1;
%e A233530 0, 268, 264, 112, 30, 6, 1;
%e A233530 0, 2578, 2379, 953, 240, 45, 7, 1;
%e A233530 0, 31672, 27568, 10500, 2505, 440, 63, 8, 1;
%e A233530 0, 475120, 392895, 143308, 32686, 5445, 728, 84, 9, 1;
%e A233530 0, 8427696, 6663624, 2342284, 514660, 82176, 10423, 1120, 108, 10, 1;
%e A233530 0, 172607454, 131211423, 44677494, 9514570, 1467837, 178689, 18214, 1632, 135, 11, 1;
%e A233530 0, 4008441848, 2943137604, 974898636, 202185010, 30319020, 3572037, 349720, 29718, 2280, 165, 12, 1; ...
%e A233530 in which column 0 consists of all zeros after row 1.
%e A233530 ILLUSTRATION OF GENERATING METHOD.
%e A233530 The g.f. of A233531 begins:
%e A233530 G(x) = x + x^2 - 2*x^3 + 6*x^4 - 18*x^5 + 44*x^6 - 56*x^7 - 300*x^8 + 2024*x^9 - 22022*x^10 - 130456*x^11 - 4241064*x^12 - 103538532*x^13 - 2893308780*x^14 - 88314189664*x^15 - 2924814872208*x^16 - 104538530634844*x^17 - 4010605941377292*x^18 +...
%e A233530 If we form a table of coefficients in the iterations of G(x) like so:
%e A233530 [1,  0,   0,   0,    0,     0,      0,      0,       0,        0, ...];
%e A233530 [1,  1,  -2,   6,  -18,    44,    -56,   -300,    2024,   -22022, ...];
%e A233530 [1,  2,  -2,   3,    2,   -48,    228,   -734,   -1298,   -14630, ...];
%e A233530 [1,  3,   0,  -3,   18,   -54,    -24,    625,   -6324,   -46064, ...];
%e A233530 [1,  4,   4,  -6,   12,    26,   -332,    244,   -2078,  -108754, ...];
%e A233530 [1,  5,  10,   0,  -10,    90,   -192,  -2044,   -3190,  -137176, ...];
%e A233530 [1,  6,  18,  21,  -18,    54,    312,  -3178,  -22032,  -203692, ...];
%e A233530 [1,  7,  28,  63,   42,   -28,    616,   -931,  -46722,  -457746, ...];
%e A233530 [1,  8,  40, 132,  248,   156,    504,   3144,  -51348,  -913356, ...];
%e A233530 [1,  9,  54, 234,  702,  1296,   1656,   6924,  -24444, -1366530, ...];
%e A233530 [1, 10,  70, 375, 1530,  4580,   9916,  22122,   38570, -1538042, ...];
%e A233530 [1, 11,  88, 561, 2882, 11814,  38280, 104929,  273592,  -987932, ...];
%e A233530 [1, 12, 108, 798, 4932, 25542, 110604, 407932, 1351614,  2563858, ...]; ...
%e A233530 then this triangle T transforms one diagonal in the above table into another:
%e A233530 T*[1, 1, -2, -3, 12, 90, 312, -931, -51348, -1366530, ...]
%e A233530 = [1, 2, 0, -6, -10, 54, 616, 3144, -24444, -1538042, ...];
%e A233530 T*[1, 2, 0, -6, -10, 54, 616, 3144, -24444, -1538042, ...]
%e A233530 = [1, 3, 4,  0, -18,-28, 504, 6924,  38570,  -987932, ...];
%e A233530 T*[1, 3, 4,  0, -18,-28, 504, 6924,  38570,  -987932, ...]
%e A233530 = [1, 4,10, 21,  42,156,1656,22122, 273592,  2563858, ...].
%o A233530 (PARI) /* Given Root Series G, Calculate T(n,k) of Triangle: */
%o A233530 {T(n, k)=local(F=x, M, N, P, m=max(n, k)); M=matrix(m+2, m+2, r, c, F=x;
%o A233530 for(i=1, r+c-2, F=subst(F, x, G +x*O(x^(m+2)))); polcoeff(F, c));
%o A233530 N=matrix(m+1, m+1, r, c, M[r, c]);
%o A233530 P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1, k+1]}
%o A233530 /* Calculates Root Series G and then Prints ROWS of Triangle: */
%o A233530 {ROWS=12;V=[1,1];print("");print1("Root Sequence: [1, 1, ");
%o A233530 for(i=2,ROWS,V=concat(V,0);G=x*truncate(Ser(V));
%o A233530 for(n=0,#V-1,if(n==#V-1,V[#V]=-T(n,0));for(k=0,n, T(n,k)));print1(V[#V]", "););
%o A233530 print1("...]");print("");print("");print("Triangle begins:");
%o A233530 for(n=0,#V-2,for(k=0,n,print1(T(n,k),", "));print(""))}
%Y A233530 Cf. A233531, A233532, A233533, A233534, A233535 (row sums).
%K A233530 nonn,tabl
%O A233530 0,5
%A A233530 _Paul D. Hanna_, Dec 11 2013