cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233531 G.f. A(x) such that triangle A233530, which transforms diagonals in the table of successive iterations of A(x), consists of all zeros after row 1.

This page as a plain text file.
%I A233531 #13 Dec 11 2013 23:29:17
%S A233531 1,1,-2,6,-18,44,-56,-300,2024,-22022,-130456,-4241064,-103538532,
%T A233531 -2893308780,-88314189664,-2924814872208,-104538530634844,
%U A233531 -4010605941377292,-164409679858874856,-7172735079437282200,-331847552362286195156,-16229743737669369558956,-836695536495554388520400
%N A233531 G.f. A(x) such that triangle A233530, which transforms diagonals in the table of successive iterations of A(x), consists of all zeros after row 1.
%e A233531 G.f.: A(x) = x + x^2 - 2*x^3 + 6*x^4 - 18*x^5 + 44*x^6 - 56*x^7 - 300*x^8 + 2024*x^9 - 22022*x^10 - 130456*x^11 - 4241064*x^12 - 103538532*x^13 - 2893308780*x^14 - 88314189664*x^15 - 2924814872208*x^16 +...
%e A233531 If we form a table of coefficients in the iterations of A(x) like so:
%e A233531 [1,  0,   0,   0,    0,     0,      0,      0,       0,        0, ...];
%e A233531 [1,  1,  -2,   6,  -18,    44,    -56,   -300,    2024,   -22022, ...];
%e A233531 [1,  2,  -2,   3,    2,   -48,    228,   -734,   -1298,   -14630, ...];
%e A233531 [1,  3,   0,  -3,   18,   -54,    -24,    625,   -6324,   -46064, ...];
%e A233531 [1,  4,   4,  -6,   12,    26,   -332,    244,   -2078,  -108754, ...];
%e A233531 [1,  5,  10,   0,  -10,    90,   -192,  -2044,   -3190,  -137176, ...];
%e A233531 [1,  6,  18,  21,  -18,    54,    312,  -3178,  -22032,  -203692, ...];
%e A233531 [1,  7,  28,  63,   42,   -28,    616,   -931,  -46722,  -457746, ...];
%e A233531 [1,  8,  40, 132,  248,   156,    504,   3144,  -51348,  -913356, ...];
%e A233531 [1,  9,  54, 234,  702,  1296,   1656,   6924,  -24444, -1366530, ...];
%e A233531 [1, 10,  70, 375, 1530,  4580,   9916,  22122,   38570, -1538042, ...];
%e A233531 [1, 11,  88, 561, 2882, 11814,  38280, 104929,  273592,  -987932, ...];
%e A233531 [1, 12, 108, 798, 4932, 25542, 110604, 407932, 1351614,  2563858, ...]; ...
%e A233531 then the triangle A233530, that transforms one diagonal in the above table into another, consists of all zeros in column 0 after row 1:
%e A233531 1;
%e A233531 1, 1;
%e A233531 0, 2, 1;
%e A233531 0, 3, 3, 1;
%e A233531 0, 8, 9, 4, 1;
%e A233531 0, 38, 40, 18, 5, 1;
%e A233531 0, 268, 264, 112, 30, 6, 1;
%e A233531 0, 2578, 2379, 953, 240, 45, 7, 1;
%e A233531 0, 31672, 27568, 10500, 2505, 440, 63, 8, 1;
%e A233531 0, 475120, 392895, 143308, 32686, 5445, 728, 84, 9, 1;
%e A233531 0, 8427696, 6663624, 2342284, 514660, 82176, 10423, 1120, 108, 10, 1;
%e A233531 0, 172607454, 131211423, 44677494, 9514570, 1467837, 178689, 18214, 1632, 135, 11, 1; ...
%e A233531 Illustrate how T=A233530 transforms one diagonal in the above table into another:
%e A233531 T*[1, 1, -2, -3, 12, 90, 312, -931, -51348, -1366530, ...]
%e A233531 = [1, 2, 0, -6, -10, 54, 616, 3144, -24444, -1538042, ...];
%e A233531 T*[1, 2, 0, -6, -10, 54, 616, 3144, -24444, -1538042, ...]
%e A233531 = [1, 3, 4,  0, -18,-28, 504, 6924,  38570,  -987932, ...];
%e A233531 T*[1, 3, 4,  0, -18,-28, 504, 6924,  38570,  -987932, ...]
%e A233531 = [1, 4,10, 21,  42,156,1656,22122, 273592,  2563858, ...].
%o A233531 (PARI) /* Given A = g.f. A(x), Calculate Triangle A233530: */
%o A233531 {T(n, k)=local(F=x, M, N, P, m=max(n, k)); M=matrix(m+2, m+2, r, c, F=x;
%o A233531 for(i=1, r+c-2, F=subst(F, x, A +x*O(x^(m+2)))); polcoeff(F, c));
%o A233531 N=matrix(m+1, m+1, r, c, M[r, c]);
%o A233531 P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1, k+1]}
%o A233531 /* Calculates A = g.f. A(x) and then Prints ROWS of Triangle: */
%o A233531 {ROWS=20;V=[1,1];print("");print1("This Sequence: [1, 1, ");
%o A233531 for(i=2,ROWS,V=concat(V,0);A=x*truncate(Ser(V));
%o A233531 for(n=0,#V-1,if(n==#V-1,V[#V]=-T(n,0));for(k=0,n, T(n,k)));print1(V[#V]", "););
%o A233531 print1("...]");print("");print("");print("Triangle A233530 begins:");
%o A233531 for(n=0,#V-2,for(k=0,n,print1(T(n,k),", "));print(""))}
%Y A233531 Cf. A233530.
%K A233531 sign
%O A233531 1,3
%A A233531 _Paul D. Hanna_, Dec 11 2013