cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233539 a(n) = |{0 < k < n-2: m - 1, m + 1, prime(m) - m and prime(m) + m are all prime with m = phi(k) + phi(n-k)/2}|, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 3, 2, 4, 2, 4, 4, 2, 4, 3, 5, 1, 4, 2, 3, 1, 2, 2, 2, 1, 1, 0, 0, 1, 4, 0, 1, 2, 0, 5, 2, 4, 4, 1, 3, 3, 3, 2, 3, 8, 2, 2, 3, 5, 5, 4, 3, 5, 3, 4, 3, 1, 3, 8, 4, 5, 4, 2, 6, 0, 12, 2, 4, 1, 5, 0, 4, 1, 4, 3, 3, 2, 5, 4, 7, 5, 3, 11, 1, 5, 4, 3, 4, 6, 2, 2, 5, 5, 6, 4, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 13 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 794.
(ii) For any integer n > 59, there is a positive integer k < n such that m = phi(k) + phi(n-k)/4 is an integer with prime(m) - m and prime(m) + m both prime.
Clearly, part (i) of the conjecture implies that there are infinitely many positive integers m with m - 1, m + 1, prime(m) - m and prime(m) + m all prime.

Examples

			a(21) = 1 since phi(6) + phi(15)/2 = 6 with 6 - 1 = 5, 6 + 1 = 7, prime(6) - 6 = 7 and prime(6) + 6 = 19 all prime.
a(25) = 1 since phi(17) + phi(8)/2 = 18 with 18 - 1 = 17, 18 + 1 = 19, prime(18) - 18 = 43 and prime(18) + 18 = 79 all prime.
		

Crossrefs

Programs

  • Mathematica
    q[n_]:=PrimeQ[n-1]&&PrimeQ[n+1]&&PrimeQ[Prime[n]-n]&&PrimeQ[Prime[n]+n]
    f[n_,k_]:=EulerPhi[k]+EulerPhi[n-k]/2
    a[n_]:=Sum[If[q[f[n,k]],1,0],{k,1,n-3}]
    Table[a[n],{n,1,100}]