A233539 a(n) = |{0 < k < n-2: m - 1, m + 1, prime(m) - m and prime(m) + m are all prime with m = phi(k) + phi(n-k)/2}|, where phi(.) is Euler's totient function.
0, 0, 0, 0, 0, 0, 0, 2, 2, 2, 3, 2, 4, 2, 4, 4, 2, 4, 3, 5, 1, 4, 2, 3, 1, 2, 2, 2, 1, 1, 0, 0, 1, 4, 0, 1, 2, 0, 5, 2, 4, 4, 1, 3, 3, 3, 2, 3, 8, 2, 2, 3, 5, 5, 4, 3, 5, 3, 4, 3, 1, 3, 8, 4, 5, 4, 2, 6, 0, 12, 2, 4, 1, 5, 0, 4, 1, 4, 3, 3, 2, 5, 4, 7, 5, 3, 11, 1, 5, 4, 3, 4, 6, 2, 2, 5, 5, 6, 4, 4
Offset: 1
Keywords
Examples
a(21) = 1 since phi(6) + phi(15)/2 = 6 with 6 - 1 = 5, 6 + 1 = 7, prime(6) - 6 = 7 and prime(6) + 6 = 19 all prime. a(25) = 1 since phi(17) + phi(8)/2 = 18 with 18 - 1 = 17, 18 + 1 = 19, prime(18) - 18 = 43 and prime(18) + 18 = 79 all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
q[n_]:=PrimeQ[n-1]&&PrimeQ[n+1]&&PrimeQ[Prime[n]-n]&&PrimeQ[Prime[n]+n] f[n_,k_]:=EulerPhi[k]+EulerPhi[n-k]/2 a[n_]:=Sum[If[q[f[n,k]],1,0],{k,1,n-3}] Table[a[n],{n,1,100}]
Comments