cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A259495 Numbers k such that sigma(k) + phi(k) + d(k) = sigma(k+1) + phi(k+1) + d(k+1), where sigma(k) is the sum of the divisors of k, phi(k) the Euler totient function of k and d(k) the number of divisors of k.

Original entry on oeis.org

4, 285, 902, 2013, 8493, 37406, 61918, 90094, 120001, 184484, 250550, 303853, 352941, 360446, 375565, 501693, 724934, 889285, 940093, 995630, 1079662, 1473565, 1488957, 1517206, 1573045, 1581806, 1692302, 1864285, 2048973, 2693517, 3393934, 3509997, 4083526, 4194406
Offset: 1

Views

Author

Paolo P. Lava, Jun 29 2015

Keywords

Examples

			sigma(4) + phi(4) + d(4) = 7 + 2 + 3 = 12 and sigma(5) + phi(5) + d(5) = 6 + 4 + 2 = 12.
sigma(285) + phi(285) + d(285) = 480 + 144 + 8 = 632 and sigma(286) + phi(286) + d(286) = 504 + 120 + 8 = 632.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local n; for n from 1 to q do
    if sigma(n)+phi(n)+tau(n)=sigma(n+1)+phi(n+1)+tau(n+1)
    then print(n); fi; od; end: P(10^9);
  • Mathematica
    f[n_] := Module[{fct = FactorInteger[n]}, p = fct[[All, 1]]; e = fct[[All, 2]]; Times @@ (e + 1) + Times @@ ((p^(e + 1) - 1)/(p - 1)) + Times @@ ((p - 1)*p^(e - 1))]; f1 = 0; s = {}; Do[f2 = f[n]; If[f2 == f1, AppendTo[s, n - 1]];  f1 = f2, {n, 2, 10^5}]; s (* Amiram Eldar, Jul 12 2019 *)

A227008 Numbers k such that Sum_{j=1..k} (sigma(j) + phi(j) + tau(j)) == 0 (mod k).

Original entry on oeis.org

1, 399, 872, 1214, 2090, 5200, 5588, 21208, 29152, 638049, 1627676, 151732410, 274845607, 3224070252, 54892040166, 69020111756, 175288968221
Offset: 1

Views

Author

Paolo P. Lava, Jun 27 2013

Keywords

Comments

a(17) > 10^11. - Donovan Johnson, Jul 07 2013
a(18) > 5*10^11. - Giovanni Resta, Jul 11 2013

Examples

			Sum_{j=1..399} sigma(j) = 130973;
Sum_{j=1..399} phi(j) = 48518;
Sum_{j=1..399} tau(j) = 2453;
(130973 + 48518 + 2453) / 399 = 456.
		

Crossrefs

Programs

  • Maple
    with(numtheory); ListA227008:=proc(q,h) local a, n;  a:=0;
    for n from 1 to q do  a:=a+sigma(n)+phi(n)+tau(n); if (a mod n)=0 then print(n); fi; od; end: ListA227008(10^9);
  • PARI
    s=0; for(n=1, 274845607, s=s+sigma(n)+eulerphi(n)+numdiv(n); if(s%n==0, print(n " " s))) /* Donovan Johnson, Jul 06 2013 */

Extensions

a(11)-a(14) from Donovan Johnson, Jul 06 2013
a(15)-a(16) from Donovan Johnson, Jul 07 2013
a(17) from Giovanni Resta, Jul 11 2013
Showing 1-2 of 2 results.