A233549 Number of ways to write n = p + q (q > 0) with p and (phi(p)*phi(q))^4 + 1 prime, where phi(.) is Euler's totient function (A000010).
0, 0, 1, 2, 2, 3, 3, 2, 3, 2, 1, 3, 1, 4, 3, 3, 4, 4, 6, 1, 1, 1, 4, 1, 2, 2, 4, 4, 1, 6, 7, 3, 4, 3, 4, 3, 3, 5, 2, 3, 5, 3, 1, 3, 5, 3, 3, 5, 6, 4, 4, 5, 4, 3, 4, 6, 4, 4, 3, 4, 5, 4, 2, 2, 4, 3, 6, 1, 4, 2, 8, 9, 2, 5, 5, 4, 2, 3, 4, 3, 6, 1, 7, 5, 8, 5, 4, 4, 4, 10, 10, 6, 4, 8, 4, 3, 4, 6, 6, 2
Offset: 1
Keywords
Examples
a(11) = 1 since 11 = 2 + 9 with 2 and (phi(2)*phi(9))^4 + 1 = 6^4 + 1 = 1297 both prime. a(13) = 1 since 13 = 5 + 8 with 5 and (phi(5)*phi(8))^4 + 1 = 16^4 + 1 = 65537 both prime. a(258) = 1 since 258 = 167 + 91 with 167 and (phi(167)*phi(91))^4 + 1 = (166*72)^4 + 1 = 20406209352892417 both prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_]:=Sum[If[PrimeQ[((Prime[k]-1)*EulerPhi[n-Prime[k]])^4+1],1,0],{k,1,PrimePi[n-1]}] Table[a[n],{n,1,100}]
Comments