cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233556 Numbers k such that k divides 1 + Sum_{j=1..k} prime(j)^17.

This page as a plain text file.
%I A233556 #38 Jun 02 2021 04:37:42
%S A233556 1,2,4,6,10,12,116,147,324,2070,2902,3663,4994,11531,13554,22421,
%T A233556 558905,1242890,1655487,2021278,2878297,4790338,7061177,16875261,
%U A233556 21813642,24563860,58919808,69676102,85356321,92610708,205600836,338430087,343675600,1176903461,1698127637,4657254361,17421656611
%N A233556 Numbers k such that k divides 1 + Sum_{j=1..k} prime(j)^17.
%C A233556 a(45) > 1.5*10^13. - _Bruce Garner_, Jun 02 2021
%H A233556 Bruce Garner, <a href="/A233556/b233556.txt">Table of n, a(n) for n = 1..44</a> (first 37 terms from Robert Price, terms 38..39 from Karl-Heinz Hofmann)
%H A233556 OEIS Wiki, <a href="https://oeis.org/wiki/Sums_of_primes_divisibility_sequences">Sums of powers of primes divisibility sequences</a>
%e A233556 10 is a term because 1 plus the sum of the first 10 primes^17 is 7404514559506748686057600 which is divisible by 10.
%t A233556 p = 2; k = 0; s = 1; lst = {}; While[k < 40000000000, s = s + p^17; If[Mod[s, ++k] == 0, AppendTo[lst, k]; Print[{k, p}]]; p = NextPrime@ p] (* derived from A128169 *)
%Y A233556 Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n).
%Y A233556 Cf. A007504, A045345, A171399, A128165, A233523, A050247, A050248.
%Y A233556 Cf. A024450, A111441, A217599, A128166, A233862, A217600, A217601.
%K A233556 nonn
%O A233556 1,2
%A A233556 _Robert Price_, Dec 12 2013