A233567 Number of ways to write n = p + q (q > 0) with p and p^4 + phi(q)^4 both prime, where phi(.) is Euler's totient function (A000010).
0, 0, 1, 1, 0, 1, 1, 2, 2, 2, 3, 1, 3, 2, 4, 2, 3, 4, 3, 4, 5, 3, 5, 2, 6, 4, 3, 4, 5, 2, 1, 2, 3, 5, 5, 1, 3, 3, 4, 3, 3, 7, 6, 4, 7, 2, 5, 5, 5, 5, 3, 7, 4, 7, 4, 6, 5, 3, 5, 6, 6, 5, 5, 8, 9, 6, 7, 5, 6, 5, 7, 7, 5, 8, 7, 6, 6, 6, 8, 8, 5, 8, 11, 3, 7, 6, 7, 8, 7, 1, 8, 5, 6, 9, 10, 8, 9, 12, 8, 6
Offset: 1
Keywords
Examples
a(7) = 1 since 7 = 3 + 4 with 3 and 3^4 + phi(4)^4 = 81 + 16 = 97 both prime. a(12) = 1 since 12 = 7 + 5 with 7 and 7^4 + phi(5)^4 = 7^4 + 4^4 = 2657 both prime. a(31) = 1 since 31 = 23 + 8 with 23 and 23^4 + phi(8)^4 = 23^4 + 4^4 = 280097 both prime. a(36) = 1 since 36 = 3 + 33 with 3 and 3^4 + phi(33)^4 = 3^4 + 20^4 = 160081 both prime. a(90) = 1 since 90 = 79 + 11 with 79 and 79^4 + phi(11)^4 = 79^4 + 10^4 = 38960081 both prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_]:=Sum[If[PrimeQ[Prime[k]^4+EulerPhi[n-Prime[k]]^4],1,0],{k,1,PrimePi[n-1]}] Table[a[n],{n,1,100}]
Comments