cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233572 In balanced ternary notation, if prepending same numbers of zeros, reverse digits of a(n) equals to -a(n).

Original entry on oeis.org

0, 2, 6, 8, 18, 20, 24, 26, 32, 54, 56, 60, 72, 78, 80, 96, 104, 146, 162, 164, 168, 180, 182, 216, 224, 234, 240, 242, 260, 288, 302, 312, 320, 338, 416, 438, 486, 488, 492, 504, 540, 546, 560, 648, 656, 672, 702, 720, 726, 728, 780, 800, 864, 896, 906, 936
Offset: 1

Views

Author

Lei Zhou, Dec 13 2013

Keywords

Comments

A233571 is a subset of this sequence.

Examples

			In balanced ternary notation, 18 = (1T00)_bt, where we use T to represent -1.  Patching two zeros before it, (1T00)_bt=(001T00)_bt.  The reverse digits of (001T00)_bt is (00T100)_bt = -18.  So 18 is in this sequence.
		

Crossrefs

Programs

  • Mathematica
    BTDigits[m_Integer, g_] :=
    Module[{n = m, d, sign, t = g},
      If[n != 0, If[n > 0, sign = 1, sign = -1; n = -n];
       d = Ceiling[Log[3, n]]; If[3^d - n <= ((3^d - 1)/2), d++];
       While[Length[t] < d, PrependTo[t, 0]]; t[[Length[t] + 1 - d]] = sign;
       t = BTDigits[sign*(n - 3^(d - 1)), t]]; t];
    BTrteQ[n_Integer] :=
    Module[{t, trim = n/3^IntegerExponent[n, 3]},
      t = BTDigits[trim, {0}]; DeleteDuplicates[t + Reverse[t]] == {0}];
    sb = Select[Range[0, 950], BTrteQ[#] &]