A233578 n >= 2 such that the denominator/6 of Bernoulli(n) is congruent to {1, 5, 7, 13 or 19} modulo 30.
2, 4, 6, 8, 12, 14, 18, 24, 26, 34, 36, 38, 40, 42, 54, 62, 68, 70, 72, 74, 76, 78, 86, 88, 94, 98, 100, 102, 108, 110, 114, 118, 120, 122, 124, 126, 130, 134, 142, 146, 152, 158, 162, 182, 186, 188, 190, 194, 196, 202, 204, 206, 208, 210, 214, 216, 218, 220, 222, 228, 230, 232, 234
Offset: 1
Keywords
Examples
100 is in this sequence, because the denominator of Bernoulli(100) = 33330, and 33330/6 = 5555, and 5555 is congruent to 5 modulo 30. As for the conjecture, the abs. val. of the numerator of Bernoulli(100) is congruent to 1 modulo 6.
Links
- Michael G. Kaarhus, Table of n, a(n) for n = 1..10000
- M. G. Kaarhus, Splitting the Bernoulli Numbers
Programs
-
Maxima
float(true)$ load(basic)$ i:[1]$ n:2$ for r:1 thru 10000 step 0 do (for p:3 while p-1<=n step 0 do (p:next_prime(p), if mod(n, p-1)=0 then push(p,i)), d:(product(i[k],k,1,length(i))), x:mod(d,30), if (x=1 or x=5 or x=7 or x=13 or x=19) then (print(r, ", ",n), r:r+1), i:[1], n:n+2)$
Comments