cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233580 In balanced ternary notation, zerofree non-repdigit numbers that are either palindromes or sign reversed palindromes.

Original entry on oeis.org

2, 7, 16, 20, 32, 43, 61, 103, 124, 146, 182, 196, 292, 302, 338, 367, 421, 547, 601, 859, 913, 1039, 1096, 1172, 1280, 1312, 1600, 1640, 1748, 1816, 2560, 2624, 2732, 2776, 3064, 3092, 3200, 3283, 3445, 3823, 3985, 4759, 4921, 5299, 5461, 7663, 7825, 8203
Offset: 1

Views

Author

Lei Zhou, Dec 14 2013

Keywords

Comments

Zerofree numbers in balanced ternary notation can be used as reversible sign operators. This sequence collects such operators that are either in palindrome form or sign reversed palindrome form (which is defined as (n)_bt+Reverse((n)_bt)=0).

Examples

			2 = (1T)_bt in balanced ternary notation, where we use T to represent -1.
1T + T1 = 0, matches the definition of sign reversed palindrome form. So 2 is in the sequence.
Other examples:
7 = (1T1_bt) - palindrome; in the sequence.
13 = (111)_bt - palindrome but repdigit; not in the sequence.
16 = (1TT1)_bt - palindrome; in the sequence.
...
52 = (1T0T1)_bt - palindrome but not zerofree; not in the sequence.
		

Crossrefs

Programs

  • Mathematica
    BTDigits[m_Integer, g_] :=
    (* This is to determine digits of a number in balanced ternary notation. *)
    Module[{n = m, d, sign, t = g},  If[n != 0, If[n > 0, sign = 1,
      sign = -1; n = -n];   d = Ceiling[Log[3, n]]; If[3^d - n <= ((3^d - 1)/2), d++];   While[Length[t] < d, PrependTo[t, 0]]; t[[Length[t] + 1 - d]] = sign;   t = BTDigits[sign*(n - 3^(d - 1)), t]]; t];
    BTnum[g_]:=Module[{bo=Reverse[g],data=0,i},Do[data=data+3^(i-1)*bo[[i]],{i,1,Length[bo]}];data];
    ct=0;n=0;dg=0;spool={};res={};While[ct<50,n++; nbits = BTDigits[n, {0}];cdg=Length[nbits];If[cdg>dg,If[Length[spool]>0,Do[bits=spool[[j]];If[!MemberQ[bits,0],rb=Reverse[bits]; sign=rb[[1]];bo=Join[bits,-sign*rb];If[MemberQ[bo,-1],data=BTnum[bo];ct++;AppendTo[res,data]];bo=Join[bits,sign*rb];If[MemberQ[bo,-1],data=BTnum[bo];ct++;AppendTo[res,data]]],{j,1,Length[spool]}];Do[bits=spool[[j]];If[!MemberQ[bits,0],rb=Reverse[bits];bo=Join[bits,{-1},rb];If[MemberQ[bo,-1],data=BTnum[bo];ct++;AppendTo[res,data]];bo=Join[bits,{1},rb];If[MemberQ[bo,-1],data=BTnum[bo];ct++;AppendTo[res,data]]],{j,1,Length[spool]}];spool={};dg=cdg]];AppendTo[spool,nbits]];Print[res]