cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233585 Coefficients of the generalized continued fraction expansion of the inverse of Euler constant, 1/gamma = a(1) +a(1)/(a(2) +a(2)/(a(3) +a(3)/(a(4) +a(4)/....))).

This page as a plain text file.
%I A233585 #29 Mar 25 2025 15:02:23
%S A233585 1,1,2,2,2,2,4,12,39,71,83,484,1028,1447,9913,31542,526880,685669,
%T A233585 1396494,1534902,2295194,9521643,9643315,42421746,183962859,553915624,
%U A233585 557976754,6111180351,10671513549,61650520975,106532505646
%N A233585 Coefficients of the generalized continued fraction expansion of the inverse of Euler constant, 1/gamma = a(1) +a(1)/(a(2) +a(2)/(a(3) +a(3)/(a(4) +a(4)/....))).
%H A233585 Stanislav Sykora, <a href="/A233585/b233585.txt">Table of n, a(n) for n = 1..670</a>
%H A233585 S. Sykora, <a href="http://dx.doi.org/10.3247/sl4math13.001">Blazys' Expansions and Continued Fractions</a>, Stans Library, Vol.IV, 2013, DOI 10.3247/sl4math13.001
%H A233585 S. Sykora, <a href="http://oeis.org/wiki/File:BlazysExpansions.txt">PARI/GP scripts for Blazys expansions and fractions</a>, OEIS Wiki
%F A233585 1/gamma = 1+1/(1+1/(2+2/(2+2/(2+2/(2+2/(4+4/(12+...))))))).
%t A233585 BlazysExpansion[n_, mx_] := Block[{k = 1, x = n, lmt = mx + 1, s, lst = {}}, While[k < lmt, s = Floor[x]; x = 1/(x/s - 1); AppendTo[lst, s]; k++]; lst]; BlazysExpansion[1/EulerGamma, 35] (* _Robert G. Wilson v_, May 22 2014 *)
%t A233585 BlazysExpansion[n_, mx_] := Reap[Nest[(1/(#/Sow[Floor[#]] - 1)) &, n, mx];][[-1, 1]]; BlazysExpansion[1/EulerGamma, 35] (* _Jan Mangaldan_, Jan 04 2017 *)
%o A233585 (PARI) bx(x, nmax)={local(c, v, k); \\ Blazys expansion function
%o A233585 v = vector(nmax); c = x; for(k=1, nmax, v[k] = floor(c); c = v[k]/(c-v[k]); ); return (v); }
%o A233585 bx(1/Euler, 670) \\ Execution; use very high real precision
%Y A233585 Cf. A233582.
%Y A233585 Cf. A001620 (gamma).
%Y A233585 Cf. Blazys's expansions: A233582 (Pi), A233583(e), A233584 (sqrt(e)), A233586 (2*gamma), A233587 and Blazys's continued fractions: A233588, A233589, A233590, A233591.
%K A233585 nonn
%O A233585 1,3
%A A233585 _Stanislav Sykora_, Jan 06 2014