A233587 Coefficients of the generalized continued fraction expansion sqrt(7) = a(1) +a(1)/(a(2) +a(2)/(a(3) +a(3)/(a(4) +a(4)/....))).
2, 3, 30, 34, 111, 235, 3775, 5052, 7352, 9091, 34991, 35530, 53424, 57290, 66023, 1409179, 1519111, 1725990, 1812396, 4370835, 4507156, 4655396, 44257080, 234755198, 261519946, 264374278, 273487975
Offset: 1
Keywords
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
BlazysExpansion[n_, mx_] := Block[{k = 1, x = n, lmt = mx + 1, s, lst = {}}, While[k < lmt, s = Floor[x]; x = 1/(x/s - 1); AppendTo[lst, s]; k++]; lst]; BlazysExpansion[Sqrt@7, 32] (* Robert G. Wilson v, May 22 2014 *)
-
PARI
bx(x, nmax)={local(c, v, k); \\ Blazys expansion function v = vector(nmax); c = x; for(k=1, nmax, v[k] = floor(c); c = v[k]/(c-v[k]); ); return (v); } bx(sqrt(7), 1000) \\ Execution; use very high real precision
Formula
sqrt(7) = 2+2/(3+3/(30+30/(34+34/(111+...)))).
Comments