cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233654 |{prime p < n: n - p = sigma(k) for some k > 0}|, where sigma(k) is the sum of all (positive) divisors of k.

Original entry on oeis.org

0, 0, 1, 1, 1, 3, 1, 3, 3, 3, 3, 2, 2, 4, 4, 3, 5, 4, 4, 6, 4, 3, 5, 3, 6, 5, 5, 1, 4, 4, 7, 5, 6, 4, 8, 3, 8, 5, 5, 2, 9, 5, 10, 8, 8, 4, 10, 3, 11, 6, 10, 2, 8, 4, 11, 5, 8, 3, 12, 5, 13, 7, 7, 3, 13, 3, 14, 7, 7, 5, 12, 3, 14, 9, 11, 6, 12, 2, 16, 7, 11, 5, 12, 3, 18, 8, 12, 2, 11, 3, 19, 6, 11, 4, 13, 4, 17, 8, 10, 6
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 14 2013

Keywords

Comments

Conjecture: (i) Let n > 1 be an integer. Then we have a(2*n) > 0. Also, 2*n + 1 can be written as p + sigma(k), where p is a Sophie Germain prime and k is a positive integer.
(ii) Each odd number greater than one can be written as sigma(k^2) + phi(m), where k and m are positive integers, and phi(.) is Euler's totient function.
That a(2*n+1) > 0 for n > 1 is a consequence of Goldbach's conjecture, for, if 2*n = p + q with p and q both prime, then 2*n + 1 = p + sigma(q) = q + sigma(p).

Examples

			a(3) = 1 since 3 = 2 + 1 = 2 + sigma(1) with 2 prime.
a(7) = 1 since 7 = 3 + 4 = 3 + sigma(3) with 3 prime.
a(10) = 3 since 10 = 2 + 8 = 2 + sigma(7) with 2 prime, 10 = 3 + 7 = 3 + sigma(4) with 3 prime, and 10 = 7 + 3 = 7 + sigma(2) with 7 prime.
a(13) = 2 since 13 = 5 + 8 = 5 + sigma(7) with 5 prime, and 13 = 7 + 6 = 7 + sigma(5) with 7 prime.
a(28) = 1 since 28 = 13 + 15 = 13 + sigma(8) with 13 prime.
a(36) = 3 since 36 = 5 + 31 = 5 + sigma(16) = 5 + sigma(25) with 5 prime, 36 = 23 + 13 = 23 + sigma(9) with 23 prime, and 36 = 29 + 7 = 29 + sigma(4) with 29 prime.
a(148) = 1 since 148 = 109 + 39 = 109 + sigma(18) with 109 prime.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Sum[If[Mod[n,d]==0,d,0],{d,1,n}]
    S[n_]:=Union[Table[f[j],{j,1,n}]]
    PQ[n_]:=n>0&&PrimeQ[n]
    a[n_]:=Sum[If[PQ[n-Part[S[n],i]],1,0],{i,1,Length[S[n]]}]
    Table[a[n],{n,1,100}]