This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A233737 #26 Sep 08 2022 08:46:06 %S A233737 1,9,81,759,7371,73656,752913,7838298,82832706,886322710,9583986555, %T A233737 104568156819,1149793519368,12728471356944,141747219186705, %U A233737 1586867219265060,17848735288114995,201607141031660871,2285899896222757346,26008027474874327190,296840444852078282610,3397721117411729991960 %N A233737 a(n) = 9*binomial(5*n+9, n)/(5*n+9). %C A233737 Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p=5, r=9. %H A233737 Vincenzo Librandi, <a href="/A233737/b233737.txt">Table of n, a(n) for n = 0..200</a> %H A233737 J-C. Aval, <a href="http://arxiv.org/pdf/0711.0906v1.pdf">Multivariate Fuss-Catalan Numbers</a>, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669. %H A233737 Thomas A. Dowling, <a href="http://www.mhhe.com/math/advmath/rosen/r5/instructor/applications/ch07.pdf">Catalan Numbers Chapter 7</a> %H A233737 Wojciech Mlotkowski, <a href="http://www.math.uiuc.edu/documenta/vol-15/28.pdf">Fuss-Catalan Numbers in Noncommutative Probability</a>, Docum. Mathm. 15: 939-955. %F A233737 G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, here p=5, r=9. %F A233737 From _Ilya Gutkovskiy_, Sep 14 2018: (Start) %F A233737 E.g.f.: 5F5(9/5,2,11/5,12/5,13/5; 1,5/2,11/4,3,13/4; 3125*x/256). %F A233737 a(n) ~ 9*5^(5*n+17/2)/(sqrt(Pi)*2^(8*n+39/2)*n^(3/2)). (End) %t A233737 Table[9 Binomial[5 n + 9, n]/(5 n + 9), {n, 0, 30}] %o A233737 (PARI) a(n) = 9*binomial(5*n+9,n)/(5*n+9); %o A233737 (PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(5/9))^9+x*O(x^n)); polcoeff(B, n)} %o A233737 (Magma) [9*Binomial(5*n+9,n)/(5*n+9): n in [0..30]]; %Y A233737 Cf. A000108, A002294, A118969, A143546, A118971, A233668, A233669, A233736, A233738. %K A233737 nonn %O A233737 0,2 %A A233737 _Tim Fulford_, Dec 15 2013