This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A233774 #34 Aug 08 2024 11:05:14 %S A233774 1,3,6,10,15,19,25,33,42,46,52,60,70,78,90,106,123,127,133,141,151, %T A233774 159,171,187,205,213,225,241,261,277,301,333,366,370,376,384,394,402, %U A233774 414,430,448,456,468,484,504,520,544,576,610,618,630,646,666,682 %N A233774 Total number of vertices in the first n rows of Sierpinski gasket, with a(0) = 1. %H A233774 Paolo Xausa, <a href="/A233774/b233774.txt">Table of n, a(n) for n = 0..10000</a> %H A233774 N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a> %H A233774 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SierpinskiGasketGraph.html">SierpiĆski Gasket Graph</a>. %H A233774 Wikipedia, <a href="https://en.wikipedia.org/wiki/Sierpinski_triangle">Sierpinski triangle</a>. %F A233774 a(2^k) = A067771(k), k >= 0. %e A233774 Illustration of initial terms: %e A233774 ----------------------------------------------------- %e A233774 Diagram n A233775(n) a(n) %e A233774 ----------------------------------------------------- %e A233774 * 0 1 1 %e A233774 /T\ %e A233774 *---* 1 2 3 %e A233774 /T\ /T\ %e A233774 *---*---* 2 3 6 %e A233774 /T\ /T\ %e A233774 *---* *---* 3 4 10 %e A233774 /T\ /T\ /T\ /T\ %e A233774 *---*---*---*---* 4 5 15 %e A233774 /T\ /T\ %e A233774 *---* *---* 5 4 19 %e A233774 ----------------------------------------------------- %e A233774 After five stages the number of "black" triangles in the structure is A006046(5) = 11. The total number of vertices is 19, so a(5) = 19. %t A233774 A233775[n_] := If[n == 0, 1, (2^IntegerExponent[n, 2]+1)*2^(DigitSum[n, 2]-1)]; %t A233774 Accumulate[Array[A233775, 100, 0]] (* _Paolo Xausa_, Aug 07 2024 *) %Y A233774 Partial sums of A233775. %Y A233774 Cf. A001316, A006046, A047999, A067771. %K A233774 nonn %O A233774 0,2 %A A233774 _Omar E. Pol_, Dec 16 2013