A233824 A recurrent sequence in Panaitopol's formula for pi(x), where pi(x) is the number of primes <= x.
0, 1, 3, 13, 71, 461, 3447, 29093, 273343, 2829325, 31998903, 392743957, 5201061455, 73943424413, 1123596277863, 18176728317413, 311951144828863, 5661698774848621, 108355864447215063, 2181096921557783605
Offset: 0
Keywords
Examples
0!*a(0) = a(0) = 0*0!, so a(0) = 0. 0!*a(1) + 1!*a(0) = a(1) + a(0) = 1*1!, so a(1) = 1. 0!*a(2) + 1!*a(1) + 2!*a(0) = a(2) + a(1) + 2*a(0) = 2*2!, so a(2) = 4 - 1 = 3.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..445
- Safia Aoudjit and Djamel Berkane, Explicit Estimates Involving the Primorial Integers and Applications, J. Int. Seq., Vol. 24 (2021), Article 21.7.8.
- M. Hassani, Some remarks on a determinant related to the prime counting function, The 8th Seminar on Linear Algebra and its Applications, 13-14th May 2015, University of Kurdistan, Iran.
- A. Ivić, Review of "A formula for pi(x) applied to a result of Koninck-Ivić" by L. Panaitopol, Zbl 0982.11003.
- A. Kourbatov, Upper Bounds for Prime Gaps Related to Firoozbakht's Conjecture, J. Integer Sequences, 18 (2015), Article 15.11.2. arXiv:1506.03042
- A. Kourbatov, On the geometric mean of the first n primes, arXiv:1603.00855 [math.NT], 2016.
- L. Panaitopol, A formula for pi(x) applied to a result of Koninck-Ivić, Nieuw Arch. Wiskd., (5) 1, No. 1 (2000), 55-56.
Programs
-
Mathematica
a[0] = 0; a[n_] := a[n] = n*n! - Sum[ k! a[n - k], {k, n - 1}]; Table[a@ n, {n, 0, 19}] (* Michael De Vlieger, Mar 26 2016 *)
Comments