cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233824 A recurrent sequence in Panaitopol's formula for pi(x), where pi(x) is the number of primes <= x.

Original entry on oeis.org

0, 1, 3, 13, 71, 461, 3447, 29093, 273343, 2829325, 31998903, 392743957, 5201061455, 73943424413, 1123596277863, 18176728317413, 311951144828863, 5661698774848621, 108355864447215063, 2181096921557783605
Offset: 0

Views

Author

Jonathan Sondow, Dec 17 2013

Keywords

Comments

Sum_{k=0..n} k!*a(n-k) = n*n!.
Panaitopol proved that x/pi(x) = log(x) - 1 - Sum_{k=1..m} a(k)/log(x)^k + O(1/log(x)^{m+1}) for m > 0.

Examples

			0!*a(0) = a(0) = 0*0!, so a(0) = 0.
0!*a(1) + 1!*a(0) = a(1) + a(0) = 1*1!, so a(1) = 1.
0!*a(2) + 1!*a(1) + 2!*a(0) = a(2) + a(1) + 2*a(0) = 2*2!, so a(2) = 4 - 1 = 3.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 0; a[n_] := a[n] = n*n! - Sum[ k! a[n - k], {k, n - 1}]; Table[a@ n, {n, 0, 19}] (* Michael De Vlieger, Mar 26 2016 *)

Formula

a(n) = n*n! - Sum_{k=1..n-1} k!*a(n-k).
a(n) = A003319(n+1) if n > 0. (Proof. Set b(n) = A003319(n), so that b(n) = n! - Sum_{k=1..n-1} k!*b(n-k). To get b(n+1) = a(n) for n > 0, induct on n, use (n+1)! = n*n! + n!, and replace k with k+1 in the sum.)