cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233825 Decimal expansion of Nicolas's constant in his condition for the Riemann Hypothesis (RH).

This page as a plain text file.
%I A233825 #25 May 25 2023 07:27:12
%S A233825 3,6,4,4,4,1,5,0,9,6,4,0,7,3,7,0,1,4,1,0,6,5,1,1,6,1,9,2,8,3,5,1,4,8,
%T A233825 1,6,0,0,5,2,2,6,0,2,4,6,6,4,3,2,4,2,4,5,6,8,5,2,4,6,3,7,5,8,2,6,3,7,
%U A233825 4,1,7,3,4,8,0,9,2,9,5,8,1,8,6,8,3,2,3,0,5,7,0,5,1,7,5,1,2,6,1,6,1,5,5,6,4,1,4,3,3,5,5,3,1,7,7,5,2,9,2,7
%N A233825 Decimal expansion of Nicolas's constant in his condition for the Riemann Hypothesis (RH).
%C A233825 Nicolas proved that RH is true if and only if limsup_{n-->infinity} (n/phi(n) - e^gamma*log(log(n)))*sqrt(log(n)) = e^gamma*(4 + gamma - log(4*Pi)), where phi(n) = A000010(n).
%H A233825 Jeffrey C. Lagarias, <a href="https://doi.org/10.1090/S0273-0979-2013-01423-X">Euler's constant: Euler's work and modern developments</a>, Bull. A.M.S., 50 (2013), 527-628; see p. 574.
%H A233825 Jean-Louis Nicolas, <a href="http://dx.doi.org/10.4064%2Faa155-3-7">Small values of the Euler function and the Riemann hypothesis</a>, Acta Arith., Vol. 155, No. 3 (2012), pp. 311-321; <a href="http://arxiv.org/abs/1202.0729">arXiv preprint</a>, arXiv:1202.0729 [math.NT], 2012.
%F A233825 Equals e^gamma*(4 + gamma - log(4*Pi)), where gamma is the Euler-Mascheroni constant.
%F A233825 Equals e^gamma*(2 + beta), where beta = Sum 1/(rho*(1-rho)), where rho runs over all nonreal zeros of the zeta function.
%e A233825 3.64441509640737014106511619283514816005226024664324245685246375826374...
%t A233825 RealDigits[Exp[EulerGamma]*(4 + EulerGamma - Log[4*Pi]), 10, 120][[1]] (* _Amiram Eldar_, May 25 2023 *)
%o A233825 (PARI) exp(Euler)*(4 + Euler - log(4*Pi)) \\ _Charles R Greathouse IV_, Mar 10 2016
%Y A233825 Cf. A000010, A001620, A195423, A216868, A218245.
%K A233825 nonn,cons
%O A233825 1,1
%A A233825 _Jonathan Sondow_, Dec 19 2013