This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A233835 #24 Sep 08 2022 08:46:06 %S A233835 1,8,84,1008,13090,179088,2542512,37106784,553270671,8391423040, %T A233835 129058047580,2008018827360,31550226597162,499892684834368, %U A233835 7978140653296800,128138773298754240,2069603881026760323,33593111381834512200,547698081896206040800,8965330544164089648000,147285313888568167177866 %N A233835 a(n) = 8*binomial(7*n + 8, n)/(7*n + 8). %C A233835 Fuss-Catalan sequence is a(n,p,r) = r*binomial(n*p + r, n)/(n*p + r); this is the case p = 7, r = 8. %H A233835 Vincenzo Librandi, <a href="/A233835/b233835.txt">Table of n, a(n) for n = 0..200</a> %H A233835 J-C. Aval, <a href="http://arxiv.org/abs/0711.0906">Multivariate Fuss-Catalan Numbers</a>, arXiv:0711.0906 [math.CO], 2007. %H A233835 J-C. Aval, <a href="http://dx.doi.org/10.1016/j.disc.2007.08.100">Multivariate Fuss-Catalan Numbers</a>, Discrete Math., 308 (2008), 4660-4669. %H A233835 Thomas A. Dowling, <a href="http://www.mhhe.com/math/advmath/rosen/r5/instructor/applications/ch07.pdf">Catalan Numbers Chapter 7</a> %H A233835 Wojciech Mlotkowski, <a href="http://www.math.uiuc.edu/documenta/vol-15/28.pdf">Fuss-Catalan Numbers in Noncommutative Probability</a>, Docum. Mathm. 15: 939-955. %H A233835 Wikipedia, <a href="https://en.wikipedia.org/wiki/Fuss-Catalan_number">Fuss-Catalan number</a> %F A233835 G.f. satisfies: A(x) = {1 + x*A(x)^(p/r)}^r, where p = 7, r = 8. %F A233835 From _Peter Bala, Oct 16 2015: (Start) %F A233835 O.g.f. A(x) = 1/x * series reversion (x*C(-x)^8), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. See cross-references for other Fuss-Catalan sequences with o.g.f. 1/x * series reversion (x*C(-x)^k), k = 3 through 11. %F A233835 A(x)^(1/8) is the o.g.f. for A002296. (End) %t A233835 Table[8 Binomial[7 n + 8, n]/(7 n + 8), {n, 0, 30}] %o A233835 (PARI) a(n) = 8*binomial(7*n+8,n)/(7*n+8); %o A233835 (PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(7/8))^8+x*O(x^n)); polcoeff(B, n)} %o A233835 (Magma) [8*Binomial(7*n+8, n)/(7*n+8): n in [0..30]]; %Y A233835 Cf. A000108, A002296, A233832, A233833, A143547, A233834, A233835, A233907, A233908. %Y A233835 Cf. A000245 (k = 3), A006629 (k = 4), A196678 (k = 5), A233668 (k = 6), A233743 (k = 7), A234467 (k = 9), A232265 (k = 10), A229963 (k = 11). %K A233835 nonn,easy %O A233835 0,2 %A A233835 _Tim Fulford_, Dec 16 2013