A233867 a(n) = |{0 < m < 2*n: m is a square with 2*n - 1 - phi(m) prime}|, where phi(.) is Euler's totient function (A000010).
0, 1, 1, 1, 2, 1, 2, 1, 1, 3, 2, 1, 4, 2, 1, 3, 2, 1, 3, 3, 1, 4, 2, 1, 6, 2, 3, 4, 1, 3, 4, 2, 3, 3, 3, 2, 6, 3, 1, 6, 3, 3, 6, 2, 2, 6, 2, 4, 2, 3, 4, 5, 3, 3, 6, 4, 5, 7, 2, 3, 7, 3, 3, 3, 5, 1, 6, 2, 3, 6, 4, 5, 5, 4, 4, 7, 3, 4, 6, 4, 3, 5, 2, 2, 8, 5, 3, 5, 3, 6, 6, 4, 5, 5, 4, 4, 7, 2, 5, 9
Offset: 1
Keywords
Examples
a(29) = 1 since 2*29 - 1 = 37 + phi(5^2) with 37 prime. a(39) = 1 since 2*39 - 1 = 71 + phi(3^2) with 71 prime. a(66) = 1 since 2*66 - 1 = 89 + phi(7^2) with 89 prime. a(128) = 1 since 2*128 - 1 = 223 + phi(8^2) with 223 prime. a(182) = 1 since 2*182 - 1 = 331 + phi(8^2) with 331 prime. a(413) = 1 since 2*413 - 1 = 823 + phi(2^2) with 823 prime. a(171) = 3 since 2*171 - 1 = 233 + phi(18^2) = 257 + phi(14^2) = 293 + phi(12^2) with 233, 257, 293 all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
a[n_]:=Sum[If[PrimeQ[2n-1-EulerPhi[k^2]],1,0],{k,1,Sqrt[2n-1]}] Table[a[n],{n,1,100}]
Comments