cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233867 a(n) = |{0 < m < 2*n: m is a square with 2*n - 1 - phi(m) prime}|, where phi(.) is Euler's totient function (A000010).

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 2, 1, 1, 3, 2, 1, 4, 2, 1, 3, 2, 1, 3, 3, 1, 4, 2, 1, 6, 2, 3, 4, 1, 3, 4, 2, 3, 3, 3, 2, 6, 3, 1, 6, 3, 3, 6, 2, 2, 6, 2, 4, 2, 3, 4, 5, 3, 3, 6, 4, 5, 7, 2, 3, 7, 3, 3, 3, 5, 1, 6, 2, 3, 6, 4, 5, 5, 4, 4, 7, 3, 4, 6, 4, 3, 5, 2, 2, 8, 5, 3, 5, 3, 6, 6, 4, 5, 5, 4, 4, 7, 2, 5, 9
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 17 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 1.
(ii) For any odd number 2*n - 1 > 4, there is a positive integer k < 2*n such that 2*n - 1 - phi(k) and 2*n - 1 + phi(k) are both prime.
By Goldbach's conjecture, 2*n > 2 could be written as p + q with p and q both prime, and hence 2*n - 1 = p + (q - 1) = p + phi(q).
By induction, phi(k^2) (k = 1,2,3,...) are pairwise distinct.

Examples

			a(29) = 1 since 2*29 - 1 = 37 + phi(5^2) with 37 prime.
a(39) = 1 since 2*39 - 1 = 71 + phi(3^2) with 71 prime.
a(66) = 1 since 2*66 - 1 = 89 + phi(7^2) with 89 prime.
a(128) = 1 since 2*128 - 1 = 223 + phi(8^2) with 223 prime.
a(182) = 1 since 2*182 - 1 = 331 + phi(8^2) with 331 prime.
a(413) = 1 since 2*413 - 1 = 823 + phi(2^2) with 823 prime.
a(171) = 3 since 2*171 - 1 = 233 + phi(18^2) = 257 + phi(14^2) = 293 + phi(12^2) with 233, 257, 293 all prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[2n-1-EulerPhi[k^2]],1,0],{k,1,Sqrt[2n-1]}]
    Table[a[n],{n,1,100}]