cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233906 Primes of the form (3^k mod k^3) + 1, in order of increasing k.

This page as a plain text file.
%I A233906 #9 Dec 18 2013 13:39:20
%S A233906 2,1499,1783,9719,9311,67883,134947,203317,189433,560171,438533,
%T A233906 943849,640973,578827,2172383,28687,1505657,7595033,2822971,1242379,
%U A233906 22899523,9232219,5730031,12336083,3487607,35451433,12174803,10234079,84459019,68736683,44671169,85507057
%N A233906 Primes of the form (3^k mod k^3) + 1, in order of increasing k.
%H A233906 K. D. Bajpai, <a href="/A233906/b233906.txt">Table of n, a(n) for n = 1..1000</a>
%e A233906 1499 is in the sequence because (3^13 mod 13^3) + 1 = 1499 which is prime.
%e A233906 9719 is in the sequence because (3^29 mod 29^3) + 1 = 9719 which is prime.
%p A233906 KD := proc() local a; a:=3^n mod n^3 + 1; if isprime(a) then RETURN (a); fi; end: seq(KD(), n=1..1000);
%Y A233906 Cf. A000040 (prime numbers).
%Y A233906 Cf. A007519 (primes congruent to 1 mod 8).
%K A233906 nonn
%O A233906 1,1
%A A233906 _K. D. Bajpai_, Dec 17 2013