This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A233968 #8 Jan 18 2014 16:21:49 %S A233968 2,4,6,12,16,30,38,64,84,128,166,248,314,448,576,790,1004,1358,1708, %T A233968 2264,2844,3694,4614,5936,7354,9342,11544,14502,17816,22220,27144, %U A233968 33584,40878,50192,60828,74276,89596,108778,130772,157918,189116,227374 %N A233968 Number of steps between two valleys at height 0 in the infinite Dyck path in which the k-th ascending line segment has A141285(k) steps and the k-th descending line segment has A194446(k) steps, k >= 1. %C A233968 Also first differences of A211978. %F A233968 a(n) = 2*(A006128(n) - A006128(n-1)) = 2*A138137(n). %e A233968 Illustration of initial terms as a dissection of a minimalist diagram of regions of the set of partitions of n, for n = 1..6: %e A233968 . _ _ _ _ _ _ %e A233968 . _ _ _ | %e A233968 . _ _ _|_ | %e A233968 . _ _ | | %e A233968 . _ _ _ _ _ | | | %e A233968 . _ _ _ | | %e A233968 . _ _ _ _ | | | %e A233968 . _ _ | | | %e A233968 . _ _ _ | | | | %e A233968 . _ _ | | | | %e A233968 . _ | | | | | %e A233968 . | | | | | | %e A233968 . %e A233968 . 2 4 6 12 16 30 %e A233968 . %e A233968 Also using the elements from the above diagram we can draw an infinite Dyck path in which the n-th odd-indexed segment has A141285(n) up-steps and the n-th even-indexed segment has A194446(n) down-steps. Note that the n-th largest peak between two valleys at height 0 is also the partition number A000041(n). %e A233968 7.................................. %e A233968 . /\ %e A233968 5.................... / \ /\ %e A233968 . /\ / \ /\ / %e A233968 3.......... / \ / \ / \/ %e A233968 2..... /\ / \ /\/ \ / %e A233968 1.. /\ / \ /\/ \ / \ /\/ %e A233968 0 /\/ \/ \/ \/ \/ %e A233968 . 2, 4, 6, 12, 16,... %e A233968 . %Y A233968 Cf. A000041, A006128, A135010, A138137, A139582, A141285, A182699, A182709, A186412, A194446, A194447, A193870, A206437, A207779, A211009, A211978, A211992, A220517, A225600, A225610, A228109, A228110, A229946. %K A233968 nonn %O A233968 1,1 %A A233968 _Omar E. Pol_, Jan 14 2014