This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A233998 #44 Apr 22 2025 04:33:26 %S A233998 2,3,7,8,12,13,17,18,22,23,27,28,32,33,37,38,42,43,47,48,50,52,53,57, %T A233998 58,62,63,67,68,72,73,75,77,78,82,83,87,88,92,93,97,98,102,103,107, %U A233998 108,112,113,117,118,122,123,127,128,132,133,137,138,142,143,147,148,152,153,157,158 %N A233998 Values of n such that numbers of the form x^2+n*y^2 for some integers x, y cannot have prime factor of 5 raised to an odd power. %C A233998 Equivalently, this sequence is the union of numbers of the form 25^n*(5*n+2) and numbers of the form 25^n*(5*n+3). %F A233998 a(n) = 2.4 n + O(log n). - _Charles R Greathouse IV_, Dec 19 2013 %o A233998 (PARI) is(n)=n/=25^valuation(n, 25); n%5==2||n%5==3 \\ _Charles R Greathouse IV_ and _V. Raman_, Dec 19 2013 %o A233998 (Python) %o A233998 from sympy import integer_log %o A233998 def A233998(n): %o A233998 def bisection(f,kmin=0,kmax=1): %o A233998 while f(kmax) > kmax: kmax <<= 1 %o A233998 kmin = kmax >> 1 %o A233998 while kmax-kmin > 1: %o A233998 kmid = kmax+kmin>>1 %o A233998 if f(kmid) <= kmid: %o A233998 kmax = kmid %o A233998 else: %o A233998 kmin = kmid %o A233998 return kmax %o A233998 def f(x): return n+x-sum(((m:=x//25**i)-2)//5+(m-3)//5+2 for i in range(integer_log(x,25)[0]+1)) %o A233998 return bisection(f,n,n) # _Chai Wah Wu_, Mar 19 2025 %Y A233998 Cf. A055046, A055047, A233999. %K A233998 nonn,easy %O A233998 1,1 %A A233998 _V. Raman_, Dec 18 2013