cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A233999 Values of n such that numbers of the form x^2+n*y^2 for some integers x, y cannot have prime factor of 7 raised to an odd power.

Original entry on oeis.org

1, 2, 4, 8, 9, 11, 15, 16, 18, 22, 23, 25, 29, 30, 32, 36, 37, 39, 43, 44, 46, 49, 50, 51, 53, 57, 58, 60, 64, 65, 67, 71, 72, 74, 78, 79, 81, 85, 86, 88, 92, 93, 95, 98, 99, 100, 102, 106, 107, 109, 113, 114, 116, 120, 121, 123, 127, 128, 130, 134, 135, 137, 141, 142, 144, 148, 149
Offset: 1

Views

Author

V. Raman, Dec 18 2013

Keywords

Comments

Equivalently, numbers of the form 49^n*(7m+1), 49^n*(7m+2), or 49^n*(7m+4). [Corrected by Charles R Greathouse IV, Jan 12 2017]
From Peter Munn, Feb 08 2024: (Start)
Numbers whose squarefree part is congruent to a (nonzero) quadratic residue modulo 7.
The integers in a subgroup of the positive rationals under multiplication. As such the sequence is closed under multiplication and - where the result is an integer - under division. The subgroup has index 4 and is generated by the primes congruent to a quadratic residue (1, 2 or 4) modulo 7, the square of 7, and 3 times the other primes; that is a generator corresponding to each prime: 2, 3*3, 3*5, 7^2, 11, 3*13, 3*17, 3*19, 23, 29, 3*31, ... .
(End)

Crossrefs

Numbers whose squarefree part is congruent to a coprime quadratic residue modulo k: A003159 (k=2), A055047 (k=3), A277549 (k=4), A352272 (k=6), A234000 (k=8), A334832 (k=24).
First differs from A047350 by including 49.

Programs

  • PARI
    is(n)=n/=49^valuation(n, 49); n%7==1||n%7==2||n%7==4 \\ Charles R Greathouse IV and V. Raman, Dec 19 2013
    
  • PARI
    is_A233999(n)=bittest(22,n/49^valuation(n, 49)%7) \\ - M. F. Hasler, Jan 02 2014
    
  • PARI
    list(lim)=my(v=List(),t,u); forstep(k=1,lim\=1,[1,2,4], listput(v,k)); for(e=1,logint(lim,49), u=49^e; for(i=1,#v, t=u*v[i]; if(t>lim, break); listput(v,t))); Set(v) \\ Charles R Greathouse IV, Jan 12 2017
    
  • Python
    from sympy import integer_log
    def A233999(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for i in range(integer_log(x,49)[0]+1):
                m = x//49**i
                c -= (m-1)//7+(m-2)//7+(m-4)//7+3
            return c
        return bisection(f,n,n) # Chai Wah Wu, Feb 14 2025

Formula

a(n) = 16n/7 + O(log n). - Charles R Greathouse IV, Jan 12 2017