A233999 Values of n such that numbers of the form x^2+n*y^2 for some integers x, y cannot have prime factor of 7 raised to an odd power.
1, 2, 4, 8, 9, 11, 15, 16, 18, 22, 23, 25, 29, 30, 32, 36, 37, 39, 43, 44, 46, 49, 50, 51, 53, 57, 58, 60, 64, 65, 67, 71, 72, 74, 78, 79, 81, 85, 86, 88, 92, 93, 95, 98, 99, 100, 102, 106, 107, 109, 113, 114, 116, 120, 121, 123, 127, 128, 130, 134, 135, 137, 141, 142, 144, 148, 149
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Squarefree Part.
Crossrefs
Programs
-
PARI
is(n)=n/=49^valuation(n, 49); n%7==1||n%7==2||n%7==4 \\ Charles R Greathouse IV and V. Raman, Dec 19 2013
-
PARI
is_A233999(n)=bittest(22,n/49^valuation(n, 49)%7) \\ - M. F. Hasler, Jan 02 2014
-
PARI
list(lim)=my(v=List(),t,u); forstep(k=1,lim\=1,[1,2,4], listput(v,k)); for(e=1,logint(lim,49), u=49^e; for(i=1,#v, t=u*v[i]; if(t>lim, break); listput(v,t))); Set(v) \\ Charles R Greathouse IV, Jan 12 2017
-
Python
from sympy import integer_log def A233999(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): c = n+x for i in range(integer_log(x,49)[0]+1): m = x//49**i c -= (m-1)//7+(m-2)//7+(m-4)//7+3 return c return bisection(f,n,n) # Chai Wah Wu, Feb 14 2025
Formula
a(n) = 16n/7 + O(log n). - Charles R Greathouse IV, Jan 12 2017
Comments