cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234006 Free polyominoes with 2n squares, having reflectional symmetry on axis that coincides with edges.

This page as a plain text file.
%I A234006 #50 Jul 26 2024 02:31:52
%S A234006 1,2,4,11,35,114,392,1381,4998,18292,67791,253182,952527,3603389,
%T A234006 13699516,52300071,200406183,770424072,2970400815,11482442855,
%U A234006 44491876993,172766491178,672186631950,2619995178793,10228902801505,39996341268584,156612023001490,614044347934591
%N A234006 Free polyominoes with 2n squares, having reflectional symmetry on axis that coincides with edges.
%C A234006 The number of free polyominoes of size 2n that have reflectional symmetry on a horizontal or vertical axis that coincides with the edges of some of the squares. The sequence is defined for 2n rather than n as odd-sized polyominoes cannot have the required symmetry.
%H A234006 John Mason, <a href="/A234006/b234006.txt">Table of n, a(n) for n = 1..50</a>
%F A234006 a(2*n+1) = A151525(2*n+1), a(2*n) = A151525(2*n) + A182645(n) - A001168(n). - _Andrew Howroyd_, Dec 05 2018
%F A234006 If n odd, a(n) = A349329(n) + A346799(n), otherwise a(n) = A349329(n) + A346799(n) + A346800(n/2) + A351191(n/2). - _John Mason_, Mar 15 2023
%t A234006 A151525 = Cases[Import["https://oeis.org/A151525/b151525.txt", "Table"], {_, _}][[All, 2]];
%t A234006 A182645 = Cases[Import["https://oeis.org/A182645/b182645.txt", "Table"], {_, _}][[All, 2]];
%t A234006 A001168 = Cases[Import["https://oeis.org/A001168/b001168.txt", "Table"], {_, _}][[All, 2]];
%t A234006 a[n_] := If[OddQ[n], A151525[[n]], A151525[[n]] + A182645[[n/2]] - A001168[[n/2]]];
%t A234006 Array[a, 28] (* _Jean-François Alcover_, Sep 10 2019, after _Andrew Howroyd_ *)
%Y A234006 Cf. A000105, A001168, A001933, A151525, A182645, A234007, A234008, A234009, A234010, A349329, A346799, A346800, A351191.
%K A234006 nonn
%O A234006 1,2
%A A234006 _John Mason_, Dec 18 2013
%E A234006 a(12)-a(28) from _Andrew Howroyd_, Dec 05 2018