cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234042 a(n) = binomial(n+4,4)*gcd(n,5)/5.

Original entry on oeis.org

1, 1, 3, 7, 14, 126, 42, 66, 99, 143, 1001, 273, 364, 476, 612, 3876, 969, 1197, 1463, 1771, 10626, 2530, 2990, 3510, 4095, 23751, 5481, 6293, 7192, 8184, 46376, 10472, 11781, 13209, 14763, 82251, 18278, 20254, 22386, 24682, 135751, 29799, 32637, 35673, 38916
Offset: 0

Views

Author

Wolfdieter Lang, Feb 24 2014

Keywords

Comments

The sixth column of the triangle A107711.

Crossrefs

Cf. A107711, A208950 (fifth column of A107711), A109009 (gcd(n,5)).

Programs

  • Mathematica
    a[n_] := Binomial[n + 4, 4] * GCD[n, 5]/5; Table[a[n], {n, 0, 40}] (* Amiram Eldar, Sep 20 2022 *)
  • PARI
    a(n) = binomial(n+4,4)*gcd(n,5)/5 \\ Charles R Greathouse IV, Feb 16 2017

Formula

a(n) = A107711(n+5,5) = binomial(n+5,5)*gcd(n,5)/(n+5), with n >= 0.
O.g.f.: ((1+x^20) + x*(1+x^18) + 3*x^2*(1+x^16) + 7*x^3*(1+x^14) + 14*x^4*(1+x^12) + 121*x^5*(1+x^10)+37*x^6*(1+x^8) + 51*x^7*(1+x^6) + 64*x^8*(1+x^4) + 73*x^9*(1+x^2) + 381*x^10)/(1-x^5)^5. From the 5-section using n = 5*k + j, for j = 0, 1, 2, 3, 4.
Sum_{n>=0} 1/a(n) = 20/3 - 16*sqrt(10-22/sqrt(5))*Pi/5. - Amiram Eldar, Sep 20 2022