This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A234099 #11 Oct 18 2024 11:43:00 %S A234099 52,82,97,115,127,136,142,172,178,192,199,214,217,227,232,241,277,280, %T A234099 297,304,307,313,322,325,331,332,352,357,370,379,388,397,402,430,442, %U A234099 448,451,457,467,478,484,493,500,502,507,511,522,532,542,547,552,556 %N A234099 Integers of the form (p*q*r - 1)/2, where p, q, r are distinct primes. %F A234099 -1 + A234102. %F A234099 a(n) = (A046389(n)-1)/2. - _Chai Wah Wu_, Oct 18 2024 %e A234099 52 = (3*5*7 - 1)/2. %t A234099 t = Select[Range[1, 10000, 2], Map[Last, FactorInteger[#]] == Table[1, {3}] &]; Take[(t - 1)/2, 120] (* A234099 *) %t A234099 v = Flatten[Position[PrimeQ[(t - 1)/2], True]] ; w = Table[t[[v[[n]]]], {n, 1, Length[v]}] (* A234100 *) %t A234099 (w - 1)/2 (* A234101 *) (* _Peter J. C. Moses_, Dec 23 2013 *) %o A234099 (Python) %o A234099 from math import isqrt %o A234099 from sympy import primepi, primerange, integer_nthroot %o A234099 def A234099(n): %o A234099 def bisection(f,kmin=0,kmax=1): %o A234099 while f(kmax) > kmax: kmax <<= 1 %o A234099 while kmax-kmin > 1: %o A234099 kmid = kmax+kmin>>1 %o A234099 if f(kmid) <= kmid: %o A234099 kmax = kmid %o A234099 else: %o A234099 kmin = kmid %o A234099 return kmax %o A234099 def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(3,integer_nthroot(x,3)[0]+1),2) for b,m in enumerate(primerange(k+1,isqrt(x//k)+1),a+1))) %o A234099 return bisection(f,n,n)>>1 # _Chai Wah Wu_, Oct 18 2024 %Y A234099 Cf. A046389, A234100, A234101, A234093, A234102. %K A234099 nonn,easy %O A234099 1,1 %A A234099 _Clark Kimberling_, Dec 27 2013