cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234116 Number of (n+1) X (2+1) 0..2 arrays with every 2 X 2 subblock having the absolute values of all six edge and diagonal differences no larger than 1.

Original entry on oeis.org

145, 1361, 12593, 116801, 1082977, 10041953, 93113761, 863396401, 8005833073, 74233997105, 688333901137, 6382568345057, 59182293086657, 548767146042305, 5088437180610625, 47182476443409233, 437498981379983185
Offset: 1

Views

Author

R. H. Hardin, Dec 19 2013

Keywords

Examples

			Some solutions for n=4:
..1..1..2....1..1..1....0..1..1....1..1..1....1..2..1....0..0..1....0..0..1
..2..1..2....1..1..2....1..0..1....2..1..0....2..2..2....0..1..0....0..0..1
..1..1..1....2..2..1....1..0..1....1..1..1....1..1..2....0..0..1....0..0..0
..2..2..1....1..1..2....1..0..0....2..1..2....0..1..2....1..1..1....0..0..1
..1..2..1....2..2..1....0..1..1....2..1..2....1..1..1....1..1..1....0..1..0
		

Crossrefs

Column 2 of A234122.

Formula

Empirical: a(n) = 10*a(n-1) - 4*a(n-2) - 26*a(n-3) + 5*a(n-4).
Empirical g.f.: x*(145 - 89*x - 437*x^2 + 85*x^3) / (1 - 10*x + 4*x^2 + 26*x^3 - 5*x^4). - Colin Barker, Oct 12 2018