cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234122 T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with every 2X2 subblock having the absolute values of all six edge and diagonal differences no larger than 1.

Original entry on oeis.org

31, 145, 145, 673, 1361, 673, 3127, 12593, 12593, 3127, 14527, 116801, 231713, 116801, 14527, 67489, 1082977, 4279065, 4279065, 1082977, 67489, 313537, 10041953, 79003521, 157630963, 79003521, 10041953, 313537, 1456615, 93113761
Offset: 1

Views

Author

R. H. Hardin, Dec 19 2013

Keywords

Comments

Table starts
.......31.........145.............673...............3127.................14527
......145........1361...........12593.............116801...............1082977
......673.......12593..........231713............4279065..............79003521
.....3127......116801.........4279065..........157630963............5807422543
....14527.....1082977........79003521.........5807422543..........427196005695
....67489....10041953......1458813409.......214027901025........31446640848897
...313537....93113761.....26937444801......7888454356625......2315408571668225
..1456615...863396401....497411686793....290756314787875....170502665692732079
..6767071..8005833073...9184935953377..10716964158533127..12556134956123911615
.31438129.74233997105.169604155276817.395017615132720993.924677153131389366689

Examples

			Some solutions for n=2 k=4
..0..1..0..0..1....0..1..2..2..2....1..2..1..2..2....0..1..0..1..2
..1..0..1..0..1....1..1..1..1..2....1..2..2..2..2....1..0..0..1..2
..1..1..0..0..1....1..2..2..1..2....2..1..1..1..2....0..1..0..1..1
		

Crossrefs

Column 1 is A086901(n+3)

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1) +3*a(n-2)
k=2: a(n) = 10*a(n-1) -4*a(n-2) -26*a(n-3) +5*a(n-4)
k=3: a(n) = 20*a(n-1) -10*a(n-2) -324*a(n-3) -277*a(n-4) +144*a(n-5)
k=4: [order 11]
k=5: [order 17]
k=6: [order 35]
k=7: [order 62]