This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A234143 #19 May 05 2021 13:39:48 %S A234143 1,4,5,19,22,25,40,64,85,89,110,124,127,148,263,552,688,700,705,790, %T A234143 1804,2101,4009,4108,8680,11830,15889,22125,23611,23710,27571,32902, %U A234143 34536,39520,47327,62329,68374,98896,100933,112660,137614,137989,138191,159124,205004 %N A234143 Numbers k such that triangular(k) - x and y - triangular(k) are both triangular numbers (A000217), where x is the nearest square below triangular(k), y is the nearest square above triangular(k). %C A234143 Intersection of A234141 and A234142. %C A234143 The sequence of triangular(a(n)) begins: 1, 10, 15, 190, 253, 325, 820, 2080, 3655, 4005, 6105, 7750, 8128, ... %e A234143 Triangular(4) = 4*5/2 = 10. The nearest squares above and below 10 are 9 and 16. Because both 10-9=1 and 16-10=6 are triangular numbers, 4 is in the sequence. %t A234143 btnQ[n_]:=Module[{tr=(n(n+1))/2,x,y},x=Floor[Sqrt[tr]]^2;y=Ceiling[ Sqrt[ tr]]^2;!IntegerQ[Sqrt[tr]]&&AllTrue[{Sqrt[1+8(tr-x)],Sqrt[1+ 8(y-tr)]}, OddQ]]; Join[{1},Select[Range[205100],btnQ]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Aug 12 2020 *) %o A234143 (Python) %o A234143 import math %o A234143 def isTriangular(n): # OK for relatively small n %o A234143 n+=n %o A234143 sr = int(math.sqrt(n)) %o A234143 return (n==sr*(sr+1)) %o A234143 for n in range(1,264444): %o A234143 tn = n*(n+1)//2 %o A234143 r = int(math.sqrt(tn-1)) %o A234143 i = tn-r*r %o A234143 r = int(math.sqrt(tn)) %o A234143 j = (r+1)*(r+1)-tn %o A234143 if isTriangular(i) and isTriangular(j): print(str(n), end=',') %Y A234143 Cf. A000217, A000290, A234141, A234142. %K A234143 nonn %O A234143 1,2 %A A234143 _Alex Ratushnyak_, Dec 19 2013 %E A234143 Name corrected by _Alex Ratushnyak_, Jun 02 2016