cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A234246 a(n) = |{0 < k < n: k*phi(n-k) + 1 is a square}|, where phi(.) is Euler's totient function.

This page as a plain text file.
%I A234246 #9 Dec 22 2013 01:55:18
%S A234246 0,0,0,1,1,0,2,1,1,3,2,1,1,2,3,4,5,4,2,2,2,5,4,1,5,4,4,3,2,8,5,2,1,3,
%T A234246 9,5,9,4,4,6,2,4,9,5,5,7,9,3,1,10,6,8,3,6,4,5,7,8,3,5,5,4,6,6,10,14,8,
%U A234246 3,3,6,9,5,7,7,9,2,8,8,9,5,6,6,6,8,9,7,9,4,5,9,10,8,8,7,14,9,5,7,6,10
%N A234246 a(n) = |{0 < k < n: k*phi(n-k) + 1 is a square}|, where phi(.) is Euler's totient function.
%C A234246 Conjecture: (i) a(n) > 0 if n is not a divisor of 6. The only values of n with a(n) = 1 are 4, 5, 8, 9, 12, 13, 24, 33, 49.
%C A234246 (ii) If n >= 60, then k + phi(n-k) is a square for some 0 < k < n. If n > 60, then sigma(k) + phi(n-k) is a square for some 0 < k < n, where sigma(k) is the sum of all positive divisors of k.
%C A234246 (iii) If n > 7 is not equal to 10 or 20, then phi(k)*phi(n-k) + 1 is a square for some 0 < k < n.
%C A234246 (iv) If n > 7 is not equal to 10 or 19, then (phi(k) + phi(n-k))/2 is a triangular number for some 0 < k < n.
%C A234246 Note that (n - 1)*phi(1) + 1 = n. So a(n) > 0 if n is a square.
%H A234246 Zhi-Wei Sun, <a href="/A234246/b234246.txt">Table of n, a(n) for n = 1..10000</a>
%e A234246 a(4) = 1 since 3*phi(1) + 1 = 2^2.
%e A234246 a(5) = 1 since 3*phi(2) + 1 = 2^2.
%e A234246 a(8) = 1 since 4*phi(4) + 1 = 3^2.
%e A234246 a(9) = 1 since 8*phi(1) + 1 = 3^2.
%e A234246 a(12) = 1 since 2*phi(10) + 1 = 3^2.
%e A234246 a(13) = 1 since 4*phi(9) + 1 = 5^2.
%e A234246 a(14) = 2 since 2*phi(12) + 1 = 3^2 and 6*phi(8) + 1 = 5^2.
%e A234246 a(24) = 1 since 12*phi(12) + 1 = 7^2.
%e A234246 a(33) = 1 since 3*phi(30) + 1 = 5^2.
%e A234246 a(49) = 1 since 48*phi(1) + 1 = 7^2.
%t A234246 SQ[n_]:=IntegerQ[Sqrt[n]]
%t A234246 a[n_]:=Sum[If[SQ[k*EulerPhi[n-k]+1],1,0],{k,1,n-1}]
%t A234246 Table[a[n],{n,1,100}]
%Y A234246 Cf. A000010, A000290, A233542, A233544, A233547, A233566, A233567, A233867, A233918, A234200
%K A234246 nonn
%O A234246 1,7
%A A234246 _Zhi-Wei Sun_, Dec 21 2013