A234247 Triangle T(n,k) read by rows: Number of non-equivalent ways (mod D_3) to choose k points from an nXnXn triangular grid so that no three of them form a 2X2X2 subtriangle.
1, 1, 1, 2, 4, 4, 2, 3, 10, 22, 31, 22, 10, 1, 4, 22, 82, 212, 374, 450, 342, 156, 36, 2, 5, 41, 231, 955, 2880, 6459, 10660, 12948, 11274, 6802, 2645, 595, 57, 2, 7, 72, 566, 3335, 14883, 51470, 139224, 297048, 500147, 661796, 681101, 536322, 314753, 132490
Offset: 1
Examples
Triangle begins 1; 1, 1; 2, 4, 4, 2; 3, 10, 22, 31, 22, 10, 1; 4, 22, 82, 212, 374, 450, 342, 156, 36, 2; 5, 41, 231, 955, 2880, 6459, 10660, 12948, 11274, 6802, 2645, 595, 57, 2; ... There are exactly T(5, 10) = 2 non-equivalent ways to choose 10 points (X) from a triangular grid of side 5 avoiding that any three of them form a subtriangle of side 2. . X X X . X X . X X . X . X X . . X X . X X . X X X X . X X
Links
- Heinrich Ludwig, Table of n, a(n) for n = 1..123
Comments