This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A234290 #22 Mar 17 2025 14:54:01 %S A234290 1,1,5,51,807,17445,479565,16019955,630301455,28552506885, %T A234290 1463744449125,83780913568275,5296205435649975,366478026602012325, %U A234290 27552067849812030525,2236327624673777509875,194908916445067162713375,18154937081288124469477125,1799824448875247911270279125 %N A234290 Duplicate of A095839. %C A234290 Compare to: G(x) = 1 + G(x)^3 * Integral 1/G(x)^3 dx, where G(x)-1 is the e.g.f. of A058562, the number of 3-way series-parallel networks with n labeled edges. %C A234290 Is this sequence the same as A095839? %F A234290 E.g.f.: 1 / ( d/dx Series_Reversion( Integral G(x) dx ) ) where G(x) = 1 + x*G(x)^3 = Sum_{n>=0} A001764(n)*x^n is the g.f. of A001764. %F A234290 E.g.f.: (2 - sqrt(1-6*x)) / (1+2*x) = 1/(1 - x*C(3*x/2)), where C(x) = 1 + x*C(x)^2 = (1 - sqrt(1-4*x))/(2*x) is the g.f. of the Catalan numbers (A000108). %F A234290 E.g.f.: 1 + Series_Reversion( (x - x^2/2) / (1+x)^2 ). %F A234290 a(n) ~ 2^(n-5/2) * 3^(n+1) * n^(n-1) / exp(n). - _Vaclav Kotesovec_, Dec 27 2013 %F A234290 D-finite with recurrence a(n) +(-4*n+9)*a(n-1) -6*(n-1)*(2*n-3)*a(n-2)=0. - _R. J. Mathar_, Nov 22 2024 %e A234290 E.g.f.: A(x) = 1 + x + 5*x^2/2! + 51*x^3/3! + 807*x^4/4! + 17445*x^5/5! +... %e A234290 where A(x)^3 = 1 + 3*x + 21*x^2/2! + 249*x^3/3! + 4275*x^4/4! + 97155*x^5/5! +... %e A234290 Integral 1/A(x) dx = x - x^2/2! - 3*x^3/3! - 27*x^4/4! - 405*x^5/5! - 8505*x^6/6! +... %e A234290 Further, %e A234290 Series_Reversion(Integral 1/A(x) dx) = x + x^2/2 + 3*x^3/3 + 12*x^4/4 + 55*x^5/5 + 273*x^6/6 + 1428*x^7/7 +...+ A001764(n-1)*x^n/n +... %e A234290 where A001764(n) = binomial(3*n,n)/(2*n+1). %t A234290 CoefficientList[Series[(2-Sqrt[1-6*x])/(1+2*x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Dec 27 2013 *) %o A234290 (PARI) {a(n)=local(A=1+x);for(i=1,n,A=1+A^3*intformal(1/(A+x*O(x^n))));n!*polcoeff(A,n)} %o A234290 for(n=0,25,print1(a(n),", ")) %o A234290 (PARI) /* From formula using g.f. of A001764 G(x) = 1 + x*G(x)^3: */ %o A234290 {a(n)=local(G=sum(m=0,n,binomial(3*m,m)/(2*m+1)*x^m)+x*O(x^n),A=1);A=1/deriv(serreverse(intformal(G))); n!*polcoeff(A, n)} %o A234290 for(n=0, 25, print1(a(n), ", ")) %o A234290 (PARI) /* Explicit formula: 1/(1 - x*C(3*x/2)), C(x) = 1 + x*C(x)^2 */ %o A234290 {a(n)=local(A=(2-sqrt(1-6*x+x^2*O(x^n)))/(1+2*x)); n!*polcoeff(A, n)} %o A234290 for(n=0, 25, print1(a(n), ", ")) %o A234290 (PARI) /* From formula: 1 + Series_Reversion((x - x^2/2)/(1+x)^2): */ %o A234290 {a(n)=local(A=1,X=x+x^2*O(x^n));A=1+serreverse((X-X^2/2)/(1+X)^2); n!*polcoeff(A, n)} %o A234290 for(n=0, 25, print1(a(n), ", ")) %Y A234290 Cf. A058562, A234289, A234291, A001764, A000108. %K A234290 dead %O A234290 0,3 %A A234290 _Paul D. Hanna_, Dec 22 2013