cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A234309 a(n) = |{2 < k <= n/2: 2^{phi(k)} + 2^{phi(n-k)} - 1 is prime}|, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4, 6, 5, 6, 5, 7, 7, 6, 7, 7, 8, 7, 7, 6, 6, 7, 9, 9, 6, 9, 12, 8, 6, 9, 9, 9, 8, 10, 8, 9, 6, 9, 8, 8, 10, 6, 8, 11, 8, 11, 8, 7, 10, 8, 7, 8, 7, 9, 9, 11, 11, 8, 8, 9, 10, 12, 7, 12, 10, 8, 5, 7, 9, 14, 9, 9, 9, 8, 7
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 23 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 5.
(ii) For any integer n > 1, 2^k +2^{phi(n-k)} - 1 is prime for some 0 < k < n, and 2^{sigma(j)} + 2^{phi(n-j)} - 1 is prime for some 0 < j < n, where sigma(j) is the sum of all positive divisors of j.
As phi(k) is even for any k > 2, part (i) of the conjecture implies that there are infinitely many primes of the form 4^a + 4^b - 1 with a and b positive integers (cf. A234310). Note that any Mersenne prime greater than 3 has the form 2^{2a+1} - 1 = 4^a + 4^a - 1.

Examples

			a(6) = 1 since 2^{phi(3)} + 2^{phi(3)} - 1 = 2^2 + 2^2 - 1 = 7 is prime.
a(7) = 1 since 2^{phi(3)} + 2^{phi(4)} - 1 = 2^2 + 2^2 - 1 = 7 is prime.
a(8) = 2 since 2^{phi(3)} + 2^{phi(5)} - 1 = 2^2 + 2^4 - 1 = 19 and 2^{phi(4)} + 2^{phi(4)} - 1 = 2^2 + 2^2 - 1 = 7 are both prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[2^(EulerPhi[k])+2^(EulerPhi[n-k])-1],1,0],{k,3,n/2}]
    Table[a[n],{n,1,100}]
Showing 1-1 of 1 results.